MULTIPLE CHOICE QUESTIONS
Question 1:
If (x + 1) is factor of the polynomial (2x2 + kx) then the value of k is
(a) –2
(b) –3
(c) 2
(d) 3
Answer 1:
(c) 2
(x+1) is a factor of 2x2+kx.So, -1 is a zero of 2x2+kx.Thus, we have:2×(-1)2+k×(-1)=0⇒2-k=0⇒k=2
Question 2:
The value of (249)2 – (248)2 is
(a) 12
(b) 477
(c) 487
(d) 497
Answer 2:
(249)2 – (248)2
We know
a2-b2=(a+b)(a-b)So, (249)2-(248)2=(249-248)(249+248)=497
Hence, the correct answer is option (d).
Question 3:
If xy+yx=-1, where x ≠ 0 and y ≠ 0, then the value of (x3 − y3) is
(a) 1
(b) −1
(c) 0
(d) 12
Answer 3:
(c) 0
xy+yx=-1⇒x2+y2xy=-1
⇒x
Thus, we have:
(x3-y3)=(x-y)(x2+y2+xy)
=(x-y)×0=0
Question 4:
If a + b + c = 0, then a3 + b3 + c3 = ?
(a) 0
(b) abc
(c) 2abc
(d) 3abc
Answer 4:
(d) 3abc
a+b+c=0⇒a+b=-c
⇒(a+b)3=(-c)3⇒a3+b3+3ab(a+b)=-c3⇒a3+b3+3ab(-c)=-c3⇒a3+b3+c3=3abc
Question 5:
If (3x+12) (3x-12)=9x2-p then the value of p is
(a) 0
(b) -14
(c) 14
(d) 12
Answer 5:
(3x+12) (3x-12)=9x2-p
9x2-14=9x2-p (∵(a2-b2)=(a+b)(a-b))⇒p=14
Hence, the correct answer is option (c).
Question 6:
The coefficient of x in the expansion of (x + 3)3 is
(a) 1
(b) 9
(c) 18
(d) 27
Answer 6:
(x + 3)3
=x3+33+9x(x+3)=x3+27+9x2+27x
So, the coefficient of x in (x + 3)3 is 27.
Hence, the correct answer is option (d).
Question 7:
Which of the following is a factor of (x + y)3 – (x3 + y3)?
(a) x2 + y2 + 2xy
(b) x2 + y2 – xy
(c) xy2
(d) 3xy
Answer 7:
(x + y)3 – (x3 + y3)
=x3+y3+3xy(x+y)-(x3+y3)=3xy(x+y)
Thus, the factors of (x + y)3 – (x3 + y3) are 3xy and (x + y).
Hence, the correct answer is option (d).
Question 8:
One of the factors of (25x2-1)+(1+5x)2 is
(a) 5 + x
(b) 5 – x
(c) 5x – 1
(d) 10x
Answer 8:
(25x2-1)+(1+5x)2=(5x-1)(5x+1)+(1+5x)2=(5x+1)[(5x-1)+(1+5x)]=(5x+1)(10x)
So, the factors of (25x2-1)+(1+5x)2 are (5x + 1) and 10x
Hence, the correct answer is option (d).
Question 9:
If (x + 5) is a factor of p(x) = x3 − 20x + 5k, then k = ?
(a) −5
(b) 5
(c) 3
(d) −3
Answer 9:
(b) 5
(x+5) is a factor of p(x)=x3-20x+5k.∴ p(-5)=0⇒(-5)3-20×(-5)+5k=0⇒-125+100+5k=0⇒5k=25⇒k=5
Question 10:
If (x + 2) and (x − 1) are factors of (x3 + 10x2 + mx + n), then
(a) m = 5, n = −3
(b) m = 7, n = −18
(c) m = 17, n = −8
(d) m = 23, n = −19
Answer 10:
(b) m = 7, n = −18
Let:
p(x)=x3+10x2+mx+n
Now,
x+2=0⇒x=-2
(x + 2) is a factor of p(x).
So, we have p(-2)=0
⇒(-2)3+10×(-2)2+m×(-2)+n=0⇒-8+40-2m+n=0⇒32-2m+n=0⇒2m-n=32 .....(i)
Now,
x-1=0⇒x=1
Also,
(x - 1) is a factor of p(x).
We have:
p(1) = 0
⇒13+10×12+m×1+n=0⇒1+10+m+n=0⇒11+m+n=0⇒m+n=-11 .....(ii)From (i) and (ii), we get:3m=21⇒m=7
By substituting the value of m in (i), we get n = −18.
∴ m = 7 and n = −18
Question 11:
104 × 96 = ?
(a) 9864
(b) 9984
(c) 9684
(d) 9884
Answer 11:
(b) 9984
104×96=(100+4)(100-4)
=1002-42=(10000-16)=9984
Question 12:
305 × 308 = ?
(a) 94940
(b) 93840
(c) 93940
(d) 94840
Answer 12:
(c) 93940
305×308=(300+5)×(300+8) =(300)2+300×(5+8)+5×8 =90000+3900+40 =93940
Question 13:
207 × 193 = ?
(a) 39851
(b) 39951
(c) 39961
(d) 38951
Answer 13:
(b) 39951
207×193=(200+7)(200-7)=(200)2-(7)2=40000-49=39951
Question 14:
4a2 + b2 + 4ab + 8a + 4b + 4 = ?
(a) (2a + b + 2)2
(b) (2a − b + 2)2
(c) (a + 2b + 2)2
(d) none of these
Answer 14:
(a) (2a + b + 2)2
4a2+b2+4ab+8a+4b+4=4a2+b2+4+4ab+4b+8a=(2a)2+b2+22+2×2a×b+2×b×2+2×2a×2=(2a+b+2)2
Question 15:
(x2 − 4x − 21) = ?
(a) (x − 7)(x − 3)
(b) (x + 7)(x − 3)
(c) (x − 7)(x + 3)
(d) none of these
Answer 15:
(c) (x − 7)(x + 3)
x2-4x-21=x2-7x+3x-21
=x(x-7)+3(x-7)=(x-7)(x+3)
Question 16:
(4x2 + 4x − 3) = ?
(a) (2x − 1) (2x − 3)
(b) (2x + 1) (2x − 3)
(c) (2x + 3) (2x − 1)
(d) none of these
Answer 16:
(c) (2x + 3) (2x − 1)
4x2+4x-3=4x2+6x-2x-3
=2x(2x+3)-1(2x+3)=(2x+3)(2x-1)
Question 17:
6x2 + 17x + 5 = ?
(a) (2x + 1)(3x + 5)
(b) (2x + 5)(3x + 1)
(c) (6x + 5)(x + 1)
(d) none of these
Answer 17:
(b) (2x + 5)(3x + 1)
6x2+17x+5=6x2+15x+2x+5
=3x(2x+5)+1(2x+5)=(2x+5)(3x+1)
Question 18:
(x + 1) is a factor of the polynomial
(a) x3 − 2x2 + x + 2
(b) x3 + 2x2 + x − 2
(c) x3 − 2x2 − x − 2
(d) x3 − 2x2 − x + 2
Answer 18:
(c) x3 − 2x2 − x − 2
Let:
f(x)=x3-2x2+x+2
By the factor theorem, (x + 1) will be a factor of f (x) if f (−1) = 0.
We have:
f(-1)=(-1)3-2×(-1)2+(-1)+2 =-1-2-1+2 =-2≠0
Hence, (x + 1) is not a factor of f(x)=x3-2x2+x+2.
Now,
Let:
f(x)=x3+2x2+x-2
By the factor theorem, (x + 1) will be a factor of f (x) if f (-1) = 0.
We have:
f(-1)=(-1)3+2×(-1)2+(-1)-2 =-1+2-1-2 =-2≠0
Hence, (x + 1) is not a factor of f(x)=x3+2x2+x-2.
Now,
Let:
f(x)=x3+2x2-x-2
By the factor theorem, (x + 1) will be a factor of f (x) if f (-1) = 0.
We have:
f(-1)=(-1)3+2×(-1)2-(-1)-2 =-1+2+1-2 =0
Hence, (x + 1) is a factor of f(x)=x3+2x2-x-2.
Question 19:
3x3 + 2x2 + 3x + 2 = ?
(a) (3x − 2)(x2 − 1)
(b) (3x − 2)(x2 + 1)
(c) (3x + 2)(x2 − 1)
(d) (3x + 2)(x2 + 1)
Answer 19:
(d) (3x + 2)(x2 + 1)
3x3+2x2+3x+2=x2(3x+2)+1(3x+2)
=(3x+2)(x2+1)
Question 20:
If a + b + c = 0, then (a2bc+b2ca+c2ab)=?
Answer 20:
(d) 3
a+b+c=0⇒a3+b3+c3=3abc
Thus, we have:
(a2bc+b2ca+c2ab)=a3+b3+c3abc
=3abcabc=3
Question 21:
If x + y + z = 9 and xy + yz + zx = 23, then the value of (x3 + y3 + z3 − 3xyz) = ?
(a) 108
(b) 207
(c) 669
(d) 729
Answer 21:
(a) 108
x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)
=(x+y+z)[(x+y+z)2-3(xy+yz+zx)]=9×(81-3×23)=9×12=108
Question 22:
If ab+ba=-1 then (a3 − b3) = ?
(a) −3
(b) −2
(c) −1
(d) 0
Answer 22:
ab+ba=-1⇒a2+b2ab=-1
⇒a2 + b2 = -ab
⇒a2 + b2 + ab = 0
Thus, we have:
(a3-b3)=(a-b)(a2+b2+ab)
=(a-b)×0=0
No comments:
Post a Comment