Processing math: 100%

RS AGGARWAL CLASS 9 Chapter 3 FACTORISATION OF POLYNOMIAL MCQ

 MULTIPLE CHOICE QUESTIONS

PAGE NO-138


Question 1:

If (x + 1) is factor of the polynomial (2x2 + kx) then the value of k is
(a) –2
(b) –3
(c) 2
(d) 3

Answer 1:

(c) 2

(x+1) is a factor of 2x2+kx.So, -1 is a zero of 2x2+kx.Thus, we have:2×(-1)2+k×(-1)=02-k=0k=2

Question 2:

The value of (249)2 – (248)2 is
(a) 12
(b) 477
(c) 487
(d) 497

Answer 2:

(249)2 – (248)2
We know
a2-b2=(a+b)(a-b)So, (249)2-(248)2=(249-248)(249+248)=497
Hence, the correct answer is option (d).

Question 3:

If xy+yx=-1, where x ≠ 0 and y ≠ 0, then the value of (x3y3) is
(a) 1
(b) −1
(c) 0
(d) 12

Answer 3:

 (c) 0

   xy+yx=-1x2+y2xy=-1
x2 + y2 = -xy
x2 + y2 + xy = 0

Thus, we have:
(x3-y3)=(x-y)(x2+y2+xy)
         =(x-y)×0=0

Question 4:

If a + b + c = 0, then a3 + b3 + c3 = ?
(a) 0
(b) abc
(c) 2abc
(d) 3abc

Answer 4:

(d) 3abc

  a+b+c=0a+b=-c

(a+b)3=(-c)3a3+b3+3ab(a+b)=-c3a3+b3+3ab(-c)=-c3a3+b3+c3=3abc

PAGE NO-139

Question 5:

If (3x+12) (3x-12)=9x2-p then the value of p is
(a) 0
(b) -14
(c) 14
(d) 12

Answer 5:

(3x+12) (3x-12)=9x2-p
9x2-14=9x2-p                    ((a2-b2)=(a+b)(a-b))p=14
Hence, the correct answer is option (c).

Question 6:

The coefficient of x in the expansion of (x + 3)3 is
(a) 1
(b) 9
(c) 18
(d) 27

Answer 6:

(x + 3)3
=x3+33+9x(x+3)=x3+27+9x2+27x
So, the coefficient of x in (x + 3)is 27.
Hence, the correct answer is option (d). 

Question 7:

Which of the following is a factor of (x + y)3 – (x3 + y3)?
(a) x2 + y2 + 2xy
(b) x2 + y2xy
(c) xy2
(d) 3xy

Answer 7:

(x + y)3 – (xy3)
=x3+y3+3xy(x+y)-(x3+y3)=3xy(x+y)
Thus, the factors of (x + y)3 – (xy3) are 3xy and (x + y).
Hence, the correct answer is option (d). 
 

Question 8:

One of the factors of (25x2-1)+(1+5x)2 is
(a) 5 + x
(b) 5 – x
(c) 5x – 1
(d) 10x
 

Answer 8:

(25x2-1)+(1+5x)2=(5x-1)(5x+1)+(1+5x)2=(5x+1)[(5x-1)+(1+5x)]=(5x+1)(10x)
So, the factors of (25x2-1)+(1+5x)2 are (5x + 1) and 10x
Hence, the correct answer is option (d). 

Question 9:

If (x + 5) is a factor of p(x) = x3 − 20x + 5k, then k = ?
(a) −5
(b) 5
(c) 3
(d) −3

Answer 9:

(b) 5

(x+5) is a factor of p(x)=x3-20x+5k. p(-5)=0(-5)3-20×(-5)+5k=0-125+100+5k=05k=25k=5

Question 10:

If (x + 2) and (x − 1) are factors of (x3 + 10x2 + mx + n), then
(a) m = 5, n = −3
(b) m = 7, n = −18
(c) m = 17, n = −8
(d) m = 23, n = −19

Answer 10:

(b) m = 7, n = −18

Let:
p(x)=x3+10x2+mx+n
Now,
x+2=0x=-2
(x + 2) is a factor of p(x).
So, we have p(-2)=0
(-2)3+10×(-2)2+m×(-2)+n=0-8+40-2m+n=032-2m+n=02m-n=32                            .....(i)
Now,
x-1=0x=1
Also, 
(x - 1) is a factor of p(x).
We have:
p(1) = 0
13+10×12+m×1+n=01+10+m+n=011+m+n=0m+n=-11                              .....(ii)From (i) and (ii), we get:3m=21m=7
By substituting the value of m in (i), we get n = −18.
∴ m = 7 and n = −18

Question 11:

104 × 96 = ?
(a) 9864
(b) 9984
(c) 9684
(d) 9884

Answer 11:

(b) 9984

104×96=(100+4)(100-4)
         =1002-42=(10000-16)=9984

Question 12:

305 × 308 = ?
(a) 94940
(b) 93840
(c) 93940
(d) 94840

Answer 12:

(c) 93940

305×308=(300+5)×(300+8)             =(300)2+300×(5+8)+5×8             =90000+3900+40             =93940

Question 13:

207 × 193 = ?
(a) 39851
(b) 39951
(c) 39961
(d) 38951

Answer 13:

(b) 39951

  207×193=(200+7)(200-7)=(200)2-(7)2=40000-49=39951

Question 14:

4a2 + b2 + 4ab + 8a + 4b + 4 = ?
(a) (2a + b + 2)2
(b) (2ab + 2)2
(c) (a + 2b + 2)2
(d) none of these

Answer 14:

(a) (2a + b + 2)2

    4a2+b2+4ab+8a+4b+4=4a2+b2+4+4ab+4b+8a=(2a)2+b2+22+2×2a×b+2×b×2+2×2a×2=(2a+b+2)2

Question 15:

(x2 − 4x − 21) = ?
(a) (x − 7)(x − 3)
(b) (x + 7)(x − 3)
(c) (x − 7)(x + 3)
(d) none of these

Answer 15:

(c) (x − 7)(x + 3)

x2-4x-21=x2-7x+3x-21
             =x(x-7)+3(x-7)=(x-7)(x+3)

Question 16:

(4x2 + 4x − 3) = ?
(a) (2x − 1) (2x − 3)
(b) (2x + 1) (2x − 3)
(c) (2x + 3) (2x − 1)
(d) none of these

Answer 16:

(c) (2x + 3) (2x − 1)

4x2+4x-3=4x2+6x-2x-3
             =2x(2x+3)-1(2x+3)=(2x+3)(2x-1)

Question 17:

6x2 + 17x + 5 = ?
(a) (2x + 1)(3x + 5)
(b) (2x + 5)(3x + 1)
(c) (6x + 5)(x + 1)
(d) none of these

Answer 17:

(b) (2x + 5)(3x + 1)

6x2+17x+5=6x2+15x+2x+5
              =3x(2x+5)+1(2x+5)=(2x+5)(3x+1)

Question 18:

(x + 1) is a factor of the polynomial
(a) x3 − 2x2 + x + 2
(b) x3 + 2x2 + x − 2
(c) x3 − 2x2 − x − 2
(d) x3 − 2x2 − x + 2

Answer 18:

(c) x3 − 2x2 − x − 2

Let:
f(x)=x3-2x2+x+2
By the factor theorem, (x + 1) will be a factor of f (x) if f (−1) = 0.
We have:
f(-1)=(-1)3-2×(-1)2+(-1)+2        =-1-2-1+2        =-20
Hence, (x + 1) is not a factor of f(x)=x3-2x2+x+2.

Now,
Let:
f(x)=x3+2x2+x-2

By the factor theorem, (x + 1) will be a factor of f (x) if f (-1) = 0.
We have:
f(-1)=(-1)3+2×(-1)2+(-1)-2        =-1+2-1-2        =-20
Hence, (x + 1) is not a factor of f(x)=x3+2x2+x-2.

Now,
Let:
f(x)=x3+2x2-x-2

By the factor theorem, (x + 1) will be a factor of f (x) if f (-1) = 0.
We have:
f(-1)=(-1)3+2×(-1)2-(-1)-2        =-1+2+1-2        =0
Hence, (x + 1) is a factor of f(x)=x3+2x2-x-2.

PAGE NO-140

Question 19:

3x3 + 2x2 + 3x + 2 = ?
(a) (3x − 2)(x2 − 1)
(b) (3x − 2)(x2 + 1)
(c) (3x + 2)(x2 − 1)
(d) (3x + 2)(x2 + 1)

Answer 19:

(d) (3x + 2)(x2 + 1)

3x3+2x2+3x+2=x2(3x+2)+1(3x+2)
                   =(3x+2)(x2+1)

Question 20:

If a + b + c = 0, then (a2bc+b2ca+c2ab)=?

Answer 20:

(d) 3

a+b+c=0a3+b3+c3=3abc

Thus, we have:
(a2bc+b2ca+c2ab)=a3+b3+c3abc
                     =3abcabc=3

Question 21:

If x + y + z = 9 and xy + yz + zx = 23, then the value of (x3 + y3 + z3 − 3xyz) = ?
(a) 108
(b) 207
(c) 669
(d) 729

Answer 21:

(a) 108

x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)
                   =(x+y+z)[(x+y+z)2-3(xy+yz+zx)]=9×(81-3×23)=9×12=108

Question 22:

If ab+ba=-1 then (a3b3) = ?
(a) −3
(b) −2
(c) −1
(d) 0

Answer 22:

    ab+ba=-1a2+b2ab=-1
a2 + b2 = -ab
a2 + b2 + ab = 0

Thus, we have:
(a3-b3)=(a-b)(a2+b2+ab)
         =(a-b)×0=0

No comments:

Post a Comment

Contact Form

Name

Email *

Message *