Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS AGGARWAL CLASS 9 Chapter 2 POLYNOMIALS MCQ

 MULTIPLE CHOICE QUESTIONS


PAGE NO- 92


Question 1:

Which of the following expressions is a polynomial in one variable?
(a) x+2x+3x+2x+3
(b) 3x+2x+53x+2x+5
(c) 2x2 - 3x + 62x2 - 3x + 6
(d) x10 + y5 + 8

Answer 1:

(c) 2x2 - 3x + 62x2 - 3x + 6

Clearly, 2x2-3x+62x2-3x+6 is a polynomial in one variable because it has only non-negative integral powers of x.

Question 2:

Which of the following expression is a polynomial?
(a) x-1x-1
(b) x-1x+1x-1x+1
(c) x2-2x2+5x2-2x2+5
(d) x2+2x3/2x+6x2+2x3/2x+6

Answer 2:

(d) x2+2x3/2x+6x2+2x3/2x+6

We have:

x2+2x32x+6=x2+2x32x-12+6x2+2x32x+6=x2+2x32x-12+6
               =x2+2x+6=x2+2x+6
 
It a polynomial because it has only non-negative integral powers of x.

PAGE NO-93

Question 3:

(a) 3y+43y+4
(b) y-3y-3
(c) y
(d) 1y+71y+7

Answer 3:

(c) y

 y is a polynomial because it has a non-negative integral power 1.

Question 4:

Which of the following is a polynimial?
(a) x-1x+2x-1x+2
(b) 1x+51x+5
(c) x+3x+3
(d) −4

Answer 4:

(d) −4

--4 is a constant polynomial of degree zero.

Question 5:

Which of the following is a polynomial?
(a) x−2 + x−1 + 3
(b) x + x−1 + 2
(c) x−1
(d) 0

Answer 5:

(d) 0

0 is a polynomial whose degree is not defined.

Question 6:

Which of the following is quadratic polynomial?
(a) x + 4
(b) x3 + x
(c) x3 + 2x + 6
(d) x2 + 5x + 4

Answer 6:

(d) x2 + 5x + 4

x2+5x+4x2+5x+4 is a polynomial of degree 2. So, it is a quadratic polynomial.

Question 7:

Which of the following is a linear polynomial?
(a) x + x2
(b) x + 1
(c) 5x2x + 3
(d) x+1xx+1x

Answer 7:

(b) x + 1

Clearly, x+1x+1 is a polynomial of degree 1. So, it is a linear polynomial.

Question 8:

Which of the following is a binomial?
(a) x2 + x + 3
(b) x2 + 4
(c) 2x2
(d) x+3+1xx+3+1x

Answer 8:

(b) x2 + 4

Clearly, x2+4x2+4 is an expression having two non-zero terms. So, it is a binomial.

Question 9:

33is a polynomial of degree
(a) 1212
(b) 2
(c) 1
(d) 0

Answer 9:

(d) 0

33 is a constant term, so it is a polynomial of degree 0.

Question 10:

Degree of the zero polynomial is
(a) 1
(b) 0
(c) not defined
(d) none of these

Answer 10:

(c) not defined

Degree of the zero polynomial is not defined.

Question 11:

Zero of the zero polynomial is
(a) 0
(b) 1
(c) every real number
(d) not defined

Answer 11:

(d) not defined

Zero of the zero polynomial is not defined.

Question 12:

If p(x) = x = 4, then p(x) + p(−x) = ?
(a) 0
(b) 4
(c) 2x
(d) 8

Answer 12:

(d) 8

Let:
p(x)=(x+4)p(x)=(x+4)

 p(-x)=(-x)+4             =-x+4 p(-x)=(-x)+4             =-x+4
Thus, we have:
p(x)+p(-x)={(x+4)+(-x+4)}p(x)+p(-x)={(x+4)+(-x+4)}
               = 4 + 4
               =8

Question 13:

If p(x)=x2-22x+1p(x)=x2-22x+1, then p(22)=p(22)=?
(a) 0
(b) 1
(c) 4242
(d) −1

Answer 13:

(b) 1

p(x)=x2-22 x+1 p(22)=(22)2-22×(22)+1p(x)=x2-22 x+1 p(22)=(22)2-22×(22)+1
             = 8 -- 8 + 1
             = 1

Question 14:

If p(x) = 5x – 4x2 + 3 then p(–1) =?
(a) 2
(b) –2
(c) 6
(d) –6

Answer 14:


p(x) = 5x – 4x2 + 3

Putting x = –1 in p(x), we get

p(–1) = 5 × (–1) – 4 × (–1)2 + 3 = –5 – 4 + 3 = –6

Hence, the correct answer is option (d).

 

Question 15:

If (x51 + 51) is divided by (x + 1) then the remainder is
(a) 0
(b) 1
(c) 49
(d) 50

Answer 15:


Let f(x) = x51 + 51

By remainder theorem, when f(x) is divided by (x + 1), then the remainder = f(−1).

Putting x = −1 in f(x), we get

 f(−1) = (−1)51 + 51 = −1 + 51 = 50

∴ Remainder = 50

Thus, the remainder when (x51 + 51) is divided by (x + 1) is 50.

Hence, the correct answer is option (d).

Question 16:

If (x + 1) is a factor of (2x2 + kx), then k = ?
(a) 4
(b) −3
(c) 2
(d) –2

Answer 16:

(c) 2

(x+1) is a factor of 2x2+kx.So, -1 is a zero of 2x2+kx.Thus, we have:2×(-1)2+k×(-1)=02-k=0k=2(x+1) is a factor of 2x2+kx.So, -1 is a zero of 2x2+kx.Thus, we have:2×(-1)2+k×(-1)=02-k=0k=2

Question 17:

When p(x) = x4 + 2x3 − 3x2 + x − 1 is divided by (x − 2), the remainder is
(a) 0
(b) −1
(c) −15
(d) 21

Answer 17:

(d) 21

x-2=0x=2x-2=0x=2
By the remainder theorem, we know that when p(x) is divided by (x -- 2), the remainder is p(2).
Thus, we have:
p(2)=24+2×23-3×22+2-1       =16+16-12+1       =21p(2)=24+2×23-3×22+2-1       =16+16-12+1       =21

PAGE NO-94

Question 18:

When p(x) = x3 − 3x2 + 4x + 32 is divided by (x + 2), the remainder is
(a) 0
(b) 32
(c) 36
(d) 4

Answer 18:

(d) 4

x+2=0x=-2
By the remainder theorem, we know that when p(x) is divided by (x + 2), the remainder is p(-2).
Now, we have:
p(-2)=(-2)3-3×(-2)2+4×(-2)+32         =-8-12-8+32         =4

Question 19:

When p(x) = 4x3 − 12x2 + 11x − 5 is divided by (2x − 1), the remainder is
(a) 0
(b) −5
(c) −2
(d) 2

Answer 19:

(c) −2

2x-1=0x=12
By the remainder theorem, we know that when p(x) is divided by (2x - 1), the remainder is p(12).
Now, we have:
 p(12)=4×(12)3-12×(12)2+11×12-5        =12-3+112-5        =-2

Question 20:

When p(x) = x3 ax2 + x is divided by (xa), the remainder is
(a) 0
(b) a
(c) 2a
(d) 3a

Answer 20:


By remainder theorem, when p(x) = x3 – ax2 + x is divided by (x – a), then the remainder = p(a).

Putting xa in p(x), we get

p(a) = a3 – a × a2 + aa3 – a3 + aa

∴ Remainder = a

Hence, the correct answer is option (b).

Question 21:

When p(x) = x3 + ax2 + 2x + a is divided by (x + a), the remainder is
(a) 0
(b) −1
(c) −15
(d) 21

Answer 21:

(c) −a

x+a=0x=-a
By the remainder theorem, we know that when p (x) is divided by (x + a), the remainder is p (−a).
Thus, we have:
p(-a)=(-a)3+a×(-a)2+2×(-a)+a         =-a3+a3-2a+a         =-a

Question 22:

(x + 1) is a factor of the polynomial
(a) x3 + x2x + 1
(b) x3 + 2x2x – 2
(c) x3 + 2x2 − x + 2
(d) x4 + x3 + x2 + 1

Answer 22:

(b) x3 − 2x2 − x − 2

Let:
f(x) = x3 − 2x2 − x − 2
By the factor theorem, (x + 1) will be a factor of f(x) if f (-1) = 0.
We have:
f(-1)=(-1)3+2×(-1)2-(-1)-2        =-1+2+1-2        =0
Hence, (x + 1) is a factor of f(x)=x3+2x2-x-2.

Question 23:

Zero of the polynomial p(x) = 2x + 5 is

(a) -25

(b) -52

(c) 25

(d) 52

Answer 23:


The zero of the polynomial p(x) can be obtained by putting p(x) = 0.

p(x)=02x+5=02x=-5x=-52
Hence, the correct answer is option (b).

Question 24:

The zeros of the polynomial p(x) = x2 + x – 6 are
(a) 2, 3
(b) –2, 3
(c) 2, –3
(d) –2, –3

Answer 24:


The given polynomial is p(x) = x2 + x – 6.

Putting x = 2 in p(x), we get

p(2) = 22 + 2 – 6 = 4 + 2 – 6 = 0

Therefore, x = 2 is a zero of the polynomial p(x).

Putting x = –3 in p(x), we get

p(–3) = (–3)2 – 3 – 6 = 9 – 9 = 0

Therefore, x = –3 is a zero of the polynomial p(x).

Thus, 2 and –3 are the zeroes of the given polynomial p(x).

Hence, the correct answer is option (c).

Question 25:

The zeros of the polynomial p(x) = 2x2 + 5x – 3 are

(a) 12, 3

(b) 12, -3

(c) -12, 3

(d) 1,-12

Answer 25:

The given polynomial is p(x) = 2x2 + 5x – 3.

Putting x=12 in p(x), we get

p(12)=2×(12)2+5×12-3=12+52-3=3-3=0

Therefore, x=12 is a zero of the polynomial p(x).

Putting x = –3 in p(x), we get

p(-3)=2×(-3)2+5×(-3)-3=18-15-3=0

Therefore, x = –3 is a zero of the polynomial p(x).

Thus, 12 and –3 are the zeroes of the given polynomial p(x).

Hence, the correct answer is option (b).

Question 26:

The zeros of the polynomial p(x) = 2x2 + 7x – 4 are

(a) 4, -12

(b) 4, 12 

(c) -4, 12

(d) -4, -12

Answer 26:


The given polynomial is p(x) = 2x2 + 7x – 4.

Putting x=12 in p(x), we get

p(12)=2×(12)2+7×12-4=12+72-4=4-4=0

Therefore, x=12 is a zero of the polynomial p(x).

Putting x = –4 in p(x), we get

p(-4)=2×(-4)2+7×(-4)-4=32-28-4=32-32=0

Therefore, x = –4 is a zero of the polynomial p(x).

Thus, 12 and –4 are the zeroes of the given polynomial p(x).

Hence, the correct answer is option (c).

Question 27:

If (x + 5) is a factor of p(x) = x3 − 20x + 5k, then k = ?
(a) −5
(b) 5
(c) 3
(d) −3

Answer 27:

(b) 5

(x+5) is a factor of p(x)=x3-20x+5k. p(-5)=0(-5)3-20×(-5)+5k=0-125+100+5k=05k=25k=5

Question 28:

If (x + 2) and (x − 1) are factors of (x3 + 10x2 + mx + n), then
(a) m = 5, n = −3
(b) m = 7, n = −18
(c) m = 17, n = −8
(d) m = 23, n = −19

Answer 28:

(b) m = 7, n = −18

Let:
p(x)=x3+10x2+mx+n
Now,
x+2=0x=-2
(x + 2) is a factor of p(x).
So, we have p(-2)=0
(-2)3+10×(-2)2+m×(-2)+n=0-8+40-2m+n=032-2m+n=02m-n=32                            .....(i)
Now,
x-1=0x=1
Also, 
(x - 1) is a factor of p(x).
We have:
p(1) = 0
13+10×12+m×1+n=01+10+m+n=011+m+n=0m+n=-11                              .....(ii)From (i) and (ii), we get:3m=21m=7
By substituting the value of m in (i), we get n = −18.
∴ m = 7 and n = −18

Question 29:

If (x100 + 2x99 + k) is divisible by (x + 1), then the value of k is
(a) 1
(b) 2
(c) −2
(d) −3

Answer 29:

(a) 1

Let:
p(x)=x100+2x99+k
Now,
x+1=0x=-1
(x+1) is divisible by p(x).p(-1)=0(-1)100+2×(-1)99+k=01-2+k=0-1+k=0k=1

Question 30:

For what value of k is the polynomial p(x) = 2x3kx + 3x + 10 exactly divisible by (x + 2)?
(a) -13
(b) 13
(c) 3
(d) −3

Answer 30:

(d) −3

Let:
p(x)=2x3-kx2+3x+10
Now,
x+2=0x=-2
p(x) is completely divisible by (x+2). p(-2)=02×(-2)3-k×(-2)2+3×(-2)+10=0-16-4k-6+10=0-12-4k=04k=-12k=-124k=-3

Question 31:

The zeroes of the polynomial p(x) = x2 − 3x are
(a) 0, 0
(b) 0, 3
(c) 0, −3
(d) 3, −3

Answer 31:

(b) 0, 3

Let:
p(x)=x2-3x
Now, we have:
p(x)=0x2-3x=0
         x(x-3)=0x=0 and x-3=0x=0 and x=3

PAGE NO-95

Question 32:

The zeroes of the polynomial p(x) = 3x2 − 1 are
(a) 1313 and 3
(b) 13 and 313 and 3
(c) -13 and 3-13 and 3
(d) 13and-1313and-13

Answer 32:

(d) 13 and -1313 and -13

Let:
p(x)=3x2-1p(x)=3x2-1

To find the zeroes of p(x), we have:p(x)=03x2-1=0To find the zeroes of p(x), we have:p(x)=03x2-1=0
         3x2=1x2=13x=±13x=13 and x=-133x2=1x2=13x=±13x=13 and x=-13
Hence, the correct answer is option D.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *