Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS AGGARWAL CLASS 9 Chapter 2 POLYNOMIALS EXERCISE 2D

 EXERCISE 2D

PAGE NO-90

Question 1:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = x3 – 8, g(x) = x – 2

Answer 1:

Let:
p(x) = x3 – 8
Now,
g(x)=0x-2=0x=2g(x)=0x-2=0x=2
By the factor theorem, (x – 2) is a factor of the given polynomial if p(2) = 0.
Thus, we have:
p(2)=(23-8)=0p(2)=(23-8)=0
Hence, (x -- 2) is a factor of the given polynomial.

Question 2:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x3 + 7x2 – 24x – 45, g(x) = x – 3

Answer 2:

Let:
p(x) = 2x3 + 7x2 – 24x – 45
Now,
x-3=0x=3x-3=0x=3
By the factor theorem, (x -- 3) is a factor of the given polynomial if p(3) = 0.
Thus, we have:
p(3)=(2×33-7×32-24×3-45)      =(54+63-72-45)      =0p(3)=(2×33-7×32-24×3-45)      =(54+63-72-45)      =0
Hence, (x -- 3) is a factor of the given polynomial.

Question 3:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x4 + 9x3 + 6x2 – 11x – 6, g(x) = x – 1

Answer 3:

Let:
p(x) = 2x4 + 9x3 + 6x2 – 11x – 6
Here, 
x-1=0x=1x-1=0x=1
By the factor theorem, (x -- 1) is a factor of the given polynomial if p(1) = 0.
Thus, we have:
p(1)=(2×14+9×13+6×12-11×1-6)      =(2+9+6-11-6)      =0p(1)=(2×14+9×13+6×12-11×1-6)      =(2+9+6-11-6)      =0
Hence, (x -- 1) is a factor of the given polynomial.


PAGE NO-91


Question 4:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = x4x2 – 12, g(x) = x + 2

Answer 4:

Let:
p(x) = x4x2 – 12
Here, 
 x+2=0x=-2
By the factor theorem, (x + 2) is a factor of the given polynomial if p (-2) = 0.
Thus, we have:
p(-2)=[(-2)4-(-2)2-12]        =(16-4-12)        =0
Hence, (x + 2) is a factor of the given polynomial.

Question 5:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 69 + 11xx2 + x3, g(x) = x + 3

Answer 5:

p(x)=69+11x-x2+x3

g(x)=x+3

Putting x = −3 in p(x), we get

p(-3)=69+11×(-3)-(-3)2+(-3)3=69-33-9-27=0 

Therefore, by factor theorem, (x + 3) is a factor of p(x).

Hence, g(x) is a factor of p(x).

Question 6:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x3 + 9x2 – 11x – 30, g(x) = x + 5

Answer 6:

Let:
p(x)=2x3+9x2-11x-30
Here, 
x+5=0x=-5
By the factor theorem, (x + 5) is a factor of the given polynomial if p (-5) = 0.
Thus, we have:
p(-5)=[2×(-5)3+9×(-5)2-11×(-5)-30]        =(-250+225+55-30)        =0
Hence, (x + 5) is a factor of the given polynomial.

Question 7:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x4 + x3 – 8x2 x + 6, g(x) = 2x – 3

Answer 7:

Let:
p(x)=2x4+x3-8x2-x+6
Here, 
2x-3=0x=32
By the factor theorem, (2x - 3) is a factor of the given polynomial if p(32)=0.
Thus, we have:

p(32)=[2×(32)4+(32)3-8×(32)2-(32)+6]        =(818+278-18-32+6)        =0
Hence, (2x - 3) is a factor of the given polynomial.

Question 8:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 3x3 + x2 – 20x + 12, g(x) = 3x – 2

Answer 8:


p(x)=3x3+x2-20x+12

g(x)=3x-2=3(x-23)

Putting x=23 in p(x), we get

p(23)=3×(23)3+(23)2-20×23+12=89+49-403+12 =8+4-120+1089=120-1209=0

Therefore, by factor theorem, (3x − 2) is a factor of p(x).

Hence, g(x) is a factor of p(x).

Question 9:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x)=7x2-42x-6, g(x)=x-2

Answer 9:

Let:
p(x)=7x2-42x-6
Here, 
x-2=0x=2
By the factor theorem, (x-2) is a factor of the given polynomial if p(2)=0
Thus, we have:
p(2)=[7×(2)2-42×2-6]         =(14-8-6)         =0
Hence, (x-2) is a factor of the given polynomial.

Question 10:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x)=22x2+5x+2, g(x)=x+2

Answer 10:

Let:
p(x)=22x2+5x+2
Here,
x+2=0x=-2
By the factor theorem, (x+2) will be a factor of the given polynomial if p(-2) = 0.
Thus, we have:
p(-2)=[22×(-2)2+5×(-2)+2]            =(42-52+2)            =0
Hence, (x+2) is a factor of the given polynomial.

Question 11:

Show that (p – 1) is a factor of (p10 – 1) and also of (p11 – 1).

Answer 11:


Let f(p) = p10 – 1 and g(p) = p11 – 1.

Putting p = 1 in f(p), we get

f(1) = 110 − 1 = 1 − 1 = 0

Therefore, by factor theorem, (p – 1) is a factor of (p10 – 1).

Now, putting p = 1 in g(p), we get

g(1) = 111 − 1 = 1 − 1 = 0

Therefore, by factor theorem, (p – 1) is a factor of (p11 – 1).

Question 12:

Find the value of k for which (x − 1) is a factor of (2x3 + 9x2 + x + k).

Answer 12:

 Let:
f(x)=2x3+9x2+x+k
(x-1) is a factor of f(x)=2x3+9x2+x+k.f(1)=02×13+9×12+1+k=012+k=0k=-12
Hence, the required value of k is -12.

Question 13:

Find the value of a for which (x − 4) is a factor of (2x3 − 3x2 − 18x + a).

Answer 13:

Let:
f(x)=2x3-3x2-18x+a
(x-4) is a factor of f(x)=2x3-3x2-18x+a.f(4)=02×43-3×42-18×4+a = 08+a=0a=-8
Hence, the required value of a is -8.

Question 14:

Find the value of a for which (x + 1) is a factor of (ax3 + x2 – 2x + 4a – 9).

Answer 14:


Let f(x) = ax3 x2 – 2x + 4a – 9

It is given that (+ 1) is a factor of f(x).

Using factor theorem,  we have

f(−1) = 0
a×(-1)3+(-1)2-2×(-1)+4a-9=0-a+1+2+4a-9=03a-6=03a=6a=2
Thus, the value of a is 2.

Question 15:

Find the value of a for which (x + 2a) is a factor of (x5 – 4a2 x3 + 2x + 2a +3).

Answer 15:

Let f(x) = x5 – 4a2 x3 + 2x + 2a +3

It is given that (+ 2a) is a factor of f(x).

Using factor theorem,  we have

f(−2a) = 0
(-2a)5-4a2×(-2a)3+2×(-2a)+2a+3=0-32a5-4a2×(-8a3)+2×(-2a)+2a+3=0-32a5+32a5-4a+2a+3=0-2a+3=0
2a=3a=32
Thus, the value of a is 32.

Question 16:

Find the value of m for which (2x – 1) is a factor of (8x4 + 4x3 – 16x2 + 10x + m).

Answer 16:


Let f(x) = 8x4 + 4x3 – 16x2 + 10x + m

It is given that (2x-1)=2(x-12) is a factor of f(x).

Using factor theorem,  we have

f(12)=08×(12)4+4×(12)3-16×(12)2+10×12+m=012+12-4+5+m=0
2+m=0m=-2
Thus, the value of m is −2.

Question 17:

Find the value of a for which the polynomial (x4x3 − 11x2x + a) is divisible by (x + 3).

Answer 17:

Let:
f(x)=x4-x3-11x2-x+a
Now, 
x+3=0x=-3
By the factor theorem, f(x) is exactly divisible by (x+3) if f(-3)=0.
Thus, we have:
f(-3)=[(-3)4-(-3)3-11×(-3)2-(-3)+a]        =(81+27-99+3+a)        =12+a
Also,
   f(-3)=012+a=0a=-12
Hence, f(x) is exactly divisible by (x+3) when a is -12.

Question 18:

Without actual division, show that (x3 − 3x2 − 13x + 15) is exactly divisible by (x2 + 2x − 3).

Answer 18:

Let:
f(x)=x3-3x2-13x+15
And,
g(x)=x2+2x-3
     =x2+x-3x-3=x(x-1)+3(x-1)=(x-1)(x+3)
Now, f(x) will be exactly divisible by g(x) if it is exactly divisible by (x-1) as well as (x+3).
For this, we must have:
f(1)=0 and f(-3)=0
Thus, we have:
f(1)=(13-3×12-13×1+15)      =(1-3-13+15)      =0
And,
f(-3)=[(-3)3-3×(-3)2-13×(-3)+15]         =(-27-27+39+15)         =0
f(x) is exactly divisible by (x-1) as well as (x+3). So, f(x) is exactly divisible by (x-1)(x+3).
Hence, f(x) is exactly divisible by x2+2x-3.

Question 19:

If (x3 + ax2 + bx + 6) has (x − 2) as a factor and leaves a remainder 3 when divided by (x − 3), find the values of a and b.

Answer 19:

Let:
f(x)=x3+ax2+bx+6
(x-2) is a factor of f(x)=x3+ax2+bx+6.f(2)=023+a×22+b×2+6=014+4a+2b=04a+2b=-142a+b=-7         ...(1)
Now, 
x-3=0x=3
By the factor theorem, we can say:
When f(x) will be divided by (x-3), 3 will be its remainder.f(3)=3

Now,
f(3)=33+a×32+b×3+6     =(27+9a+3b+6)     =33+9a+3b
Thus, we have:
    f(3)=333+9a+3b=39a+3b=-303a+b=-10      ...(2)
Subtracting (1) from (2), we get:
a = -3
By putting the value of a in (1), we get the value of b, i.e., -1.
 a = -3 and b = -1

Question 20:

Find the values of a and b so that the polynomial (x3 − 10x2 + ax + b) is exactly divisible by (x −1) as well as (x − 2).

Answer 20:

Let:
f(x)=x3-10x2+ax+b
Now,
x-1=0x=1
By the factor theorem, we can say:
f(x) will be exactly divisible by (x-1) if f(1)=0.
Thus, we have:
f(1)=13-10×12+a×1+b      =(1-10+a+b)      =-9+a+b
∴ f(1)=0a+b=9            ...(1)
Also,
x-2=0x=2
By the factor theorem, we can say:
f(x) will be exactly divisible by (x-2) if f(2)=0.
Thus, we have:
f(2)=23-10×22+a×2+b      =(8-40+2a+b)      =-32+2a+b
f(2)=02a+b=32       ...(2)

Subtracting (1) from (2), we get:a=23
Putting the value of a, we get the value of b, i.e., -14.
∴ a = 23 and b = -14

Question 21:

Find the values of a and b so that the polynomial (x4 + ax3 − 7x2 − 8x + b) is exactly divisible by (x + 2) as well as (x + 3).

Answer 21:

Let:
f(x)=x4+ax3-7x2-8x+b
Now,
x+2=0x=-2
By the factor theorem, we can say:
f(x) will be exactly divisible by (x+2) if f(-2)=0.
Thus, we have:
f(-2)=[(-2)4+a×(-2)3-7×(-2)2-8×(-2)+b]        =(16-8a-28+16+b)        =(4-8a+b)
∴ f(-2)=08a-b=4      ...(1)
Also,
x+3=0x=-3
By the factor theorem, we can say:
f(x) will be exactly divisible by (x+3) if f(-3)=0.
Thus, we have:
f(-3)=[(-3)4+a×(-3)3-7×(-3)2-8×(-3)+b]        =(81-27a-63+24+b)        =(42-27a+b)
∴ f(-3)=027a-b=42   ...(2)
Subtracting (1) from (2), we get:19a=38a=2
Putting the value of a, we get the value of b, i.e., 12.
∴ a = 2 and b = 12

Question 22:

If both (x – 2) and (x-12) are factors of px2 + 5x + r, prove that p = r.

Answer 22:


Let f(x) = px2 + 5x + r

It is given that (x – 2) is a factor of f(x).

Using factor theorem,  we have

f(2)=0p×22+5×2+r=04p+r=-10           .....(1)
Also,  (x-12) is a factor of f(x).

Using factor theorem,  we have

f(12)=0p×(12)2+5×12+r=0p4+r=-52p+4r=-10         .....(2)
From (1) and (2), we have

4p+r=p+4r4p-p=4r-r3p=3rp=r

 

Question 23:

Without actual division, prove that 2x4 – 5x3 + 2x2x + 2 is divisible by x2 – 3x + 2.

Answer 23:


Let f(x) = 2x4 – 5x3 + 2x2 – x + 2 and g(x) = x2 – 3x + 2.

x2-3x+2=x2-2x-x+2=x(x-2)-1(x-2)=(x-1)(x-2)
Now, f(x) will be divisible by g(x) if f(x) is exactly divisible by both (x − 1) and (x − 2).

Putting x = 1 in f(x), we get

f(1) = 2 × 14 – 5 × 13 + 2 × 12 – 1 + 2 = 2 – 5 + 2 – 1 + 2 = 0

By factor theorem, (x − 1) is a factor of f(x). So, f(x) is exactly divisible by (x − 1).

Putting x = 2 in f(x), we get

f(2) = 2 × 24 – 5 × 23 + 2 × 22 – 2 + 2 = 32 – 40 + 8 – 2 + 2 = 0

By factor theorem, (x − 2) is a factor of f(x). So, f(x) is exactly divisible by (x − 2).

Thus, f(x) is exactly divisible by both (x − 1) and (x − 2).

Hence, f(x) = 2x4 – 5x3 + 2x2 – x + 2 is exactly divisible by (x − 1)(x − 2) = x2 – 3x + 2.

Question 24:

What must be added to 2x4 – 5x3 + 2x2x – 3 so that the result is exactly divisible by (x – 2)?

Answer 24:


Let k be added to 2x4 – 5x3 + 2x2 – – 3 so that the result is exactly divisible by (– 2). Here, k is a constant.

∴ f(x) = 2x4 – 5x3 + 2x2 – – 3 + k is exactly divisible by (– 2).

Using factor theorem, we have

f(2)=02×24-5×23+2×22-2-3+k=032-40+8-5+k=0-5+k=0k=5
Thus, 5 must be added to 2x4 – 5x3 + 2x2 – – 3 so that the result is exactly divisible by (– 2).


Question 25:

What must be subtracted from (x4 + 2x3 – 2x2 + 4x + 6) so that the result is exactly divisible by (x2 + 2x – 3)?

Answer 25:


Dividing (x4 + 2x3 – 2x2 + 4x + 6) by (x+ 2x – 3) using long division method, we have



Here, the remainder obtained is (2x + 9).

Thus, the remainder (2x + 9) must be subtracted from (x4 + 2x3 – 2x2 + 4x + 6) so that the result is exactly divisible by (x+ 2x – 3).


Question 26:

Use factor theorem to prove that (x + a) is a factor of (xn + an) for any odd positive integer.

Answer 26:


Let f(x) = xn an

Putting x = −a in f(x), we get

f(−a) = (−a)n an

If n is any odd positive integer, then

f(−a) = (−a)n an = −an an = 0

Therefore, by factor theorem, (x + a) is a factor of (xn an) for any odd positive integer.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *