RS AGGARWAL CLASS 9 Chapter 2 POLYNOMIALS EXERCISE 2D

 EXERCISE 2D

PAGE NO-90

Question 1:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = x3 – 8, g(x) = x – 2

Answer 1:

Let:
p(x) = x3 – 8
Now,
gx=0x-2=0x=2
By the factor theorem, (x – 2) is a factor of the given polynomial if p(2) = 0.
Thus, we have:
p2=23-8=0
Hence, (x - 2) is a factor of the given polynomial.

Question 2:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x3 + 7x2 – 24x – 45, g(x) = x – 3

Answer 2:

Let:
p(x) = 2x3 + 7x2 – 24x – 45
Now,
x-3=0x=3
By the factor theorem, (x - 3) is a factor of the given polynomial if p(3) = 0.
Thus, we have:
p3=2×33-7×32-24×3-45      =54+63-72-45      =0
Hence, (x - 3) is a factor of the given polynomial.

Question 3:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x4 + 9x3 + 6x2 – 11x – 6, g(x) = x – 1

Answer 3:

Let:
p(x) = 2x4 + 9x3 + 6x2 – 11x – 6
Here, 
x-1=0x=1
By the factor theorem, (x - 1) is a factor of the given polynomial if p(1) = 0.
Thus, we have:
p1=2×14+9×13+6×12-11×1-6      =2+9+6-11-6      =0
Hence, (x - 1) is a factor of the given polynomial.


PAGE NO-91


Question 4:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = x4x2 – 12, g(x) = x + 2

Answer 4:

Let:
p(x) = x4x2 – 12
Here, 
 x+2=0x=-2
By the factor theorem, (x + 2) is a factor of the given polynomial if p (-2) = 0.
Thus, we have:
p-2=-24--22-12        =16-4-12        =0
Hence, (x + 2) is a factor of the given polynomial.

Question 5:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 69 + 11xx2 + x3, g(x) = x + 3

Answer 5:

px=69+11x-x2+x3

gx=x+3

Putting x = −3 in p(x), we get

p-3=69+11×-3--32+-33=69-33-9-27=0 

Therefore, by factor theorem, (x + 3) is a factor of p(x).

Hence, g(x) is a factor of p(x).

Question 6:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x3 + 9x2 – 11x – 30, g(x) = x + 5

Answer 6:

Let:
px=2x3+9x2-11x-30
Here, 
x+5=0x=-5
By the factor theorem, (x + 5) is a factor of the given polynomial if p (-5) = 0.
Thus, we have:
p-5=2×-53+9×-52-11×-5-30        =-250+225+55-30        =0
Hence, (x + 5) is a factor of the given polynomial.

Question 7:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 2x4 + x3 – 8x2 x + 6, g(x) = 2x – 3

Answer 7:

Let:
px=2x4+x3-8x2-x+6
Here, 
2x-3=0x=32
By the factor theorem, (2x - 3) is a factor of the given polynomial if p32=0.
Thus, we have:

p32=2×324+323-8×322-32+6        =818+278-18-32+6        =0
Hence, (2x - 3) is a factor of the given polynomial.

Question 8:

Using factor theorem, show that g(x) is a factor of p(x), when
p(x) = 3x3 + x2 – 20x + 12, g(x) = 3x – 2

Answer 8:


px=3x3+x2-20x+12

gx=3x-2=3x-23

Putting x=23 in p(x), we get

p23=3×233+232-20×23+12=89+49-403+12 =8+4-120+1089=120-1209=0

Therefore, by factor theorem, (3x − 2) is a factor of p(x).

Hence, g(x) is a factor of p(x).

Question 9:

Using factor theorem, show that g(x) is a factor of p(x), when
px=7x2-42x-6, gx=x-2

Answer 9:

Let:
px=7x2-42x-6
Here, 
x-2=0x=2
By the factor theorem, x-2 is a factor of the given polynomial if p2=0
Thus, we have:
p2=7×22-42×2-6         =14-8-6         =0
Hence, x-2 is a factor of the given polynomial.

Question 10:

Using factor theorem, show that g(x) is a factor of p(x), when
px=22x2+5x+2, gx=x+2

Answer 10:

Let:
px=22x2+5x+2
Here,
x+2=0x=-2
By the factor theorem, x+2 will be a factor of the given polynomial if p-2 = 0.
Thus, we have:
p-2=22×-22+5×-2+2            =42-52+2            =0
Hence, x+2 is a factor of the given polynomial.

Question 11:

Show that (p – 1) is a factor of (p10 – 1) and also of (p11 – 1).

Answer 11:


Let f(p) = p10 – 1 and g(p) = p11 – 1.

Putting p = 1 in f(p), we get

f(1) = 110 − 1 = 1 − 1 = 0

Therefore, by factor theorem, (p – 1) is a factor of (p10 – 1).

Now, putting p = 1 in g(p), we get

g(1) = 111 − 1 = 1 − 1 = 0

Therefore, by factor theorem, (p – 1) is a factor of (p11 – 1).

Question 12:

Find the value of k for which (x − 1) is a factor of (2x3 + 9x2 + x + k).

Answer 12:

 Let:
fx=2x3+9x2+x+k
x-1 is a factor of fx=2x3+9x2+x+k.f1=02×13+9×12+1+k=012+k=0k=-12
Hence, the required value of k is -12.

Question 13:

Find the value of a for which (x − 4) is a factor of (2x3 − 3x2 − 18x + a).

Answer 13:

Let:
fx=2x3-3x2-18x+a
x-4 is a factor of fx=2x3-3x2-18x+a.f4=02×43-3×42-18×4+a = 08+a=0a=-8
Hence, the required value of a is -8.

Question 14:

Find the value of a for which (x + 1) is a factor of (ax3 + x2 – 2x + 4a – 9).

Answer 14:


Let f(x) = ax3 x2 – 2x + 4a – 9

It is given that (+ 1) is a factor of f(x).

Using factor theorem,  we have

f(−1) = 0
a×-13+-12-2×-1+4a-9=0-a+1+2+4a-9=03a-6=03a=6a=2
Thus, the value of a is 2.

Question 15:

Find the value of a for which (x + 2a) is a factor of (x5 – 4a2 x3 + 2x + 2a +3).

Answer 15:

Let f(x) = x5 – 4a2 x3 + 2x + 2a +3

It is given that (+ 2a) is a factor of f(x).

Using factor theorem,  we have

f(−2a) = 0
-2a5-4a2×-2a3+2×-2a+2a+3=0-32a5-4a2×-8a3+2×-2a+2a+3=0-32a5+32a5-4a+2a+3=0-2a+3=0
2a=3a=32
Thus, the value of a is 32.

Question 16:

Find the value of m for which (2x – 1) is a factor of (8x4 + 4x3 – 16x2 + 10x + m).

Answer 16:


Let f(x) = 8x4 + 4x3 – 16x2 + 10x + m

It is given that 2x-1=2x-12 is a factor of f(x).

Using factor theorem,  we have

f12=08×124+4×123-16×122+10×12+m=012+12-4+5+m=0
2+m=0m=-2
Thus, the value of m is −2.

Question 17:

Find the value of a for which the polynomial (x4x3 − 11x2x + a) is divisible by (x + 3).

Answer 17:

Let:
fx=x4-x3-11x2-x+a
Now, 
x+3=0x=-3
By the factor theorem, fx is exactly divisible by x+3 if f-3=0.
Thus, we have:
f-3=-34--33-11×-32--3+a        =81+27-99+3+a        =12+a
Also,
   f-3=012+a=0a=-12
Hence, fx is exactly divisible by x+3 when a is -12.

Question 18:

Without actual division, show that (x3 − 3x2 − 13x + 15) is exactly divisible by (x2 + 2x − 3).

Answer 18:

Let:
fx=x3-3x2-13x+15
And,
gx=x2+2x-3
     =x2+x-3x-3=xx-1+3x-1=x-1x+3
Now, fx will be exactly divisible by gx if it is exactly divisible by x-1 as well as x+3.
For this, we must have:
f1=0 and f-3=0
Thus, we have:
f1=13-3×12-13×1+15      =1-3-13+15      =0
And,
f-3=-33-3×-32-13×-3+15         =-27-27+39+15         =0
fx is exactly divisible by x-1 as well as x+3. So, fx is exactly divisible by x-1x+3.
Hence, fx is exactly divisible by x2+2x-3.

Question 19:

If (x3 + ax2 + bx + 6) has (x − 2) as a factor and leaves a remainder 3 when divided by (x − 3), find the values of a and b.

Answer 19:

Let:
fx=x3+ax2+bx+6
x-2 is a factor of fx=x3+ax2+bx+6.f2=023+a×22+b×2+6=014+4a+2b=04a+2b=-142a+b=-7         ...1
Now, 
x-3=0x=3
By the factor theorem, we can say:
When fx will be divided by x-3, 3 will be its remainder.f3=3

Now,
f3=33+a×32+b×3+6     =27+9a+3b+6     =33+9a+3b
Thus, we have:
    f3=333+9a+3b=39a+3b=-303a+b=-10      ...2
Subtracting (1) from (2), we get:
a = -3
By putting the value of a in (1), we get the value of b, i.e., -1.
 a = -3 and b = -1

Question 20:

Find the values of a and b so that the polynomial (x3 − 10x2 + ax + b) is exactly divisible by (x −1) as well as (x − 2).

Answer 20:

Let:
fx=x3-10x2+ax+b
Now,
x-1=0x=1
By the factor theorem, we can say:
fx will be exactly divisible by x-1 if f1=0.
Thus, we have:
f1=13-10×12+a×1+b      =1-10+a+b      =-9+a+b
∴ f1=0a+b=9            ...1
Also,
x-2=0x=2
By the factor theorem, we can say:
fx will be exactly divisible by x-2 if f2=0.
Thus, we have:
f2=23-10×22+a×2+b      =8-40+2a+b      =-32+2a+b
f2=02a+b=32       ...2

Subtracting (1) from (2), we get:a=23
Putting the value of a, we get the value of b, i.e., -14.
∴ a = 23 and b = -14

Question 21:

Find the values of a and b so that the polynomial (x4 + ax3 − 7x2 − 8x + b) is exactly divisible by (x + 2) as well as (x + 3).

Answer 21:

Let:
fx=x4+ax3-7x2-8x+b
Now,
x+2=0x=-2
By the factor theorem, we can say:
fx will be exactly divisible by x+2 if f-2=0.
Thus, we have:
f-2=-24+a×-23-7×-22-8×-2+b        =16-8a-28+16+b        =4-8a+b
∴ f-2=08a-b=4      ...1
Also,
x+3=0x=-3
By the factor theorem, we can say:
fx will be exactly divisible by x+3 if f-3=0.
Thus, we have:
f-3=-34+a×-33-7×-32-8×-3+b        =81-27a-63+24+b        =42-27a+b
∴ f-3=027a-b=42   ...2
Subtracting 1 from 2, we get:19a=38a=2
Putting the value of a, we get the value of b, i.e., 12.
∴ a = 2 and b = 12

Question 22:

If both (x – 2) and x-12 are factors of px2 + 5x + r, prove that p = r.

Answer 22:


Let f(x) = px2 + 5x + r

It is given that (x – 2) is a factor of f(x).

Using factor theorem,  we have

f2=0p×22+5×2+r=04p+r=-10           .....1
Also,  x-12 is a factor of f(x).

Using factor theorem,  we have

f12=0p×122+5×12+r=0p4+r=-52p+4r=-10         .....2
From (1) and (2), we have

4p+r=p+4r4p-p=4r-r3p=3rp=r

 

Question 23:

Without actual division, prove that 2x4 – 5x3 + 2x2x + 2 is divisible by x2 – 3x + 2.

Answer 23:


Let f(x) = 2x4 – 5x3 + 2x2 – x + 2 and g(x) = x2 – 3x + 2.

x2-3x+2=x2-2x-x+2=xx-2-1x-2=x-1x-2
Now, f(x) will be divisible by g(x) if f(x) is exactly divisible by both (x − 1) and (x − 2).

Putting x = 1 in f(x), we get

f(1) = 2 × 14 – 5 × 13 + 2 × 12 – 1 + 2 = 2 – 5 + 2 – 1 + 2 = 0

By factor theorem, (x − 1) is a factor of f(x). So, f(x) is exactly divisible by (x − 1).

Putting x = 2 in f(x), we get

f(2) = 2 × 24 – 5 × 23 + 2 × 22 – 2 + 2 = 32 – 40 + 8 – 2 + 2 = 0

By factor theorem, (x − 2) is a factor of f(x). So, f(x) is exactly divisible by (x − 2).

Thus, f(x) is exactly divisible by both (x − 1) and (x − 2).

Hence, f(x) = 2x4 – 5x3 + 2x2 – x + 2 is exactly divisible by (x − 1)(x − 2) = x2 – 3x + 2.

Question 24:

What must be added to 2x4 – 5x3 + 2x2x – 3 so that the result is exactly divisible by (x – 2)?

Answer 24:


Let k be added to 2x4 – 5x3 + 2x2 – – 3 so that the result is exactly divisible by (– 2). Here, k is a constant.

∴ f(x) = 2x4 – 5x3 + 2x2 – – 3 + k is exactly divisible by (– 2).

Using factor theorem, we have

f2=02×24-5×23+2×22-2-3+k=032-40+8-5+k=0-5+k=0k=5
Thus, 5 must be added to 2x4 – 5x3 + 2x2 – – 3 so that the result is exactly divisible by (– 2).


Question 25:

What must be subtracted from (x4 + 2x3 – 2x2 + 4x + 6) so that the result is exactly divisible by (x2 + 2x – 3)?

Answer 25:


Dividing (x4 + 2x3 – 2x2 + 4x + 6) by (x+ 2x – 3) using long division method, we have



Here, the remainder obtained is (2x + 9).

Thus, the remainder (2x + 9) must be subtracted from (x4 + 2x3 – 2x2 + 4x + 6) so that the result is exactly divisible by (x+ 2x – 3).


Question 26:

Use factor theorem to prove that (x + a) is a factor of (xn + an) for any odd positive integer.

Answer 26:


Let f(x) = xn an

Putting x = −a in f(x), we get

f(−a) = (−a)n an

If n is any odd positive integer, then

f(−a) = (−a)n an = −an an = 0

Therefore, by factor theorem, (x + a) is a factor of (xn an) for any odd positive integer.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *