RS AGGARWAL CLASS 9 Chapter 2 POLYNOMIALS EXERCISE 2C

 EXERCISE 2C

PAGE NO-84


Question 1:

By actual division, find the quotient and the remainder when (x4 + 1) is divided by (x – 1).
Verify that remainder = f(1).

Answer 1:

Let f(x) = x4 + 1 and g(x) = x – 1.



Quotient = x3x2x + 1

Remainder = 2

Verification:

Putting x = 1 in f(x), we get

f(1) = 14 + 1 = 1 + 1 = 2 = Remainder, when f(x) = x4 + 1 is divided by g(x) = x – 1



Question 2:

Verify the division algorithm for the polynomials p(x)=2x46x3+2x2x+2 and g(x)=x+2p(x)=2x4-6x3+2x2-x+2 and g(x)=x+2.

Answer 2:


p(x)=2x46x3+2x2x+2p(x)=2x4-6x3+2x2-x+2 and g(x)=x+2



Quotient = 2x310x2+22x452x3-10x2+22x-45

Remainder = 92

Verification:

Divisor × Quotient + Remainder
=(x+2)×(2x310x2+22x45)+92=x(2x310x2+22x45)+2(2x310x2+22x45)+92=2x410x3+22x245x+4x320x2+44x90+92=2x46x3+2x2x+2=(x+2)×(2x3-10x2+22x-45)+92=x(2x3-10x2+22x-45)+2(2x3-10x2+22x-45)+92=2x4-10x3+22x2-45x+4x3-20x2+44x-90+92=2x4-6x3+2x2-x+2
= Dividend

Hence verified.



Question 3:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=x3-6x2+9x+3, g(x)=x-1.

Answer 3:


p(x)=x3-6x2+9x+3

g(x)=x-1

By remainder theorem, when p(x) is divided by (x − 1), then the remainder = p(1).

Putting x = 1 in p(x), we get

p(1)=13-6×12+9×1+3=1-6+9+3=7 

∴ Remainder = 7

Thus, the remainder when p(x) is divided by g(x) is 7.

Question 4:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=2x3-7x2+9x-13, g(x)=x-3.

Answer 4:


p(x)=2x3-7x2+9x-13

g(x)=x-3

By remainder theorem, when p(x) is divided by (x − 3), then the remainder = p(3).

Putting x = 3 in p(x), we get

p(3)=2×33-7×32+9×3-13=54-63+27-13=5 

∴ Remainder = 5

Thus, the remainder when p(x) is divided by g(x) is 5.

Question 5:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=3x4-6x2-8x-2, g(x)=x-2.

Answer 5:


p(x)=3x4-6x2-8x-2

g(x)=x-2

By remainder theorem, when p(x) is divided by (x − 2), then the remainder = p(2).

Putting x = 2 in p(x), we get

p(2)=3×24-6×22-8×2-2=48-24-16-2=6 

∴ Remainder = 6

Thus, the remainder when p(x) is divided by g(x) is 6.

Question 6:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=2x3-9x2+x+15, g(x)=2x-3.

Answer 6:


p(x)=2x3-9x2+x+15

g(x)=2x-3=2(x-32)

By remainder theorem, when p(x) is divided by (2x − 3), then the remainder = p(32).

Putting x=32 in p(x), we get

p(32)=2×(32)3-9×(32)2+32+15=274-814+32+15 =27-81+6+604=124=3

∴ Remainder = 3

Thus, the remainder when p(x) is divided by g(x) is 3.

Question 7:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=x3-2x2-8x-1, g(x)=x+1.

Answer 7:


p(x)=x3-2x2-8x-1

g(x)=x+1

By remainder theorem, when p(x) is divided by (x + 1), then the remainder = p(−1).

Putting x = −1 in p(x), we get

p(-1)=(-1)3-2×(-1)2-8×(-1)-1=-1-2+8-1=4 

∴ Remainder = 4

Thus, the remainder when p(x) is divided by g(x) is 4.

Question 8:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=2x3+x2-15x-12, g(x)=x+2.

Answer 8:


p(x)=2x3+x2-15x-12

g(x)=x+2

By remainder theorem, when p(x) is divided by (x + 2), then the remainder = p(−2).

Putting x = −2 in p(x), we get

p(-2)=2×(-2)3+(-2)2-15×(-2)-12=-16+4+30-12=6 

∴ Remainder = 6

Thus, the remainder when p(x) is divided by g(x) is 6.

Question 9:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=6x3+13x2+3, g(x)=3x+2.

Answer 9:


p(x)=6x3+13x2+3

g(x)=3x+2=3(x+23)=3[x-(-23)]

By remainder theorem, when p(x) is divided by (3x + 2), then the remainder = p(-23).

Putting x=-23 in p(x), we get

p(-23)=6×(-23)3+13×(-23)2+3=-169+529+3 =-16+52+279=639=7

∴ Remainder = 7

Thus, the remainder when p(x) is divided by g(x) is 7.

Question 10:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=x3-6x2+2x-4, g(x)=1-32x.

Answer 10:


p(x)=x3-6x2+2x-4

g(x)=1-32x=-32(x-23)

By remainder theorem, when p(x) is divided by (1-32x), then the remainder = p(23).

Putting x=23 in p(x), we get

p(23)=(23)3-6×(23)2+2×(23)-4=827-83+43-4 =8-72+36-10827=-13627

∴ Remainder = -13627

Thus, the remainder when p(x) is divided by g(x) is -13627.

Question 11:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=2x3+3x2-11x-3, g(x)=(x+12).

Answer 11:


p(x)=2x3+3x2-11x-3

g(x)=(x+12)=[x-(-12)]

By remainder theorem, when p(x) is divided by (x+12), then the remainder = p(-12).

Putting x=-12 in p(x), we get

p(-12)=2×(-12)3+3×(-12)2-11×(-12)-3=-14+34+112-3 =-1+3+22-124=124=3

∴ Remainder = 3

Thus, the remainder when p(x) is divided by g(x) is 3.

Question 12:

Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where
p(x)=x3-ax2+6x-a, g(x)=x-a.

Answer 12:


p(x)=x3-ax2+6x-a

g(x)=x-a

By remainder theorem, when p(x) is divided by (x − a), then the remainder = p(a).

Putting x = a in p(x), we get

p(a)=a3-a×a2+6×a-a=a3-a3+6a-a=5a 

∴ Remainder = 5a

Thus, the remainder when p(x) is divided by g(x) is 5a.

Question 13:

The polynomials (2x3+x2-ax+2) and (2x3-3x2-3x+a) when divided by (x – 2) leave the same remainder. Find the value of a.

Answer 13:


Let f(x)=2x3+x2-ax+2 and g(x)=2x3-3x2-3x+a.

By remainder theorem, when f(x) is divided by (x – 2), then the remainder = f(2).

Putting x = 2 in f(x), we get

f(2)=2×23+22-a×2+2=16+4-2a+2=-2a+22 

By remainder theorem, when g(x) is divided by (x – 2), then the remainder = g(2).

Putting x = 2 in g(x), we get

g(2)=2×23-3×22-3×2+a=16-12-6+a=-2+a

It is given that,

f(2)=g(2)-2a+22=-2+a-3a=-24a=8
Thus, the value of a is 8.

Question 14:

The polynomial p(x) = x4 − 2x3 + 3x2ax + b when divided by (x − 1) and (x + 1) leaves the remainders 5 and 19 respectively. Find the values of a and b. Hence, find the remainder when p(x) is divided by (x − 2).

Answer 14:

 Let:p(x)=x4-2x3+3x2-ax+b

Now,When p(x) is divided by (x-1), the remainder is p(1).When p(x) is divided by (x+1), the remainder is p(-1).
Thus, we have:
p(1)=(14-2×13+3×12-a×1+b)      =(1-2+3-a+b)      =2-a+b
And,
p(-1)=[(-1)4-2×(-1)3+3×(-1)2-a×(-1)+b]         =(1+2+3+a+b)         =6+a+b

Now,

2-a+b=5    ...(1)6+a+b=19  ...(2)

Adding (1) and (2), we get:8+2b=24
2b=16b=8
By putting the value of b, we get the value of a, i.e., 5.
∴ a = 5 and b = 8
Now,
f(x) = x4-2x3 + 3x2 - 5x + 8
Also,
When p(x) is divided by (x-2), the remainder is p(2).
Thus, we have:
p(2)=(24-2×23+3×22-5×2+8)   [a=5 and b=8]      =(16-16+12-10+8)      =10

PAGE NO-85

Question 15:

If p(x)=x3-5x2+4x-3 and g(x)=x-2p(x)=x3-5x2+4x-3 and g(x)=x-2, show that p(x) is not a multiple of g(x).

Answer 15:


p(x)=x3-5x2+4x-3p(x)=x3-5x2+4x-3

g(x)=x-2g(x)=x-2

Putting x = 2 in p(x), we get

p(2)=23-5×22+4×2-3=8-20+8-3=-70p(2)=23-5×22+4×2-3=8-20+8-3=-70

Therefore, by factor theorem, (x − 2) is not a factor of p(x).

Hence, p(x) is not a multiple of g(x).

Question 16:

If p(x)=2x3-11x2-4x+5 and g(x)=2x+1p(x)=2x3-11x2-4x+5 and g(x)=2x+1, show that g(x) is not a factor of p(x).

Answer 16:


p(x)=2x3-11x2-4x+5p(x)=2x3-11x2-4x+5

g(x)=2x+1=2(x+12)=2[x-(-12)]g(x)=2x+1=2(x+12)=2[x-(-12)]

Putting x=-12x=-12 in p(x), we get

p(-12)=2×(-12)3-11×(-12)2-4×(-12)+5=-14-114+2+5p(-12)=2×(-12)3-11×(-12)2-4×(-12)+5=-14-114+2+5 =-124+7=-3+7=40=-124+7=-3+7=40

Therefore, by factor theorem, (2x + 1) is not a factor of p(x).

Hence, g(x) is not a factor of p(x).

No comments:

Post a Comment

Contact Form

Name

Email *

Message *