Processing math: 100%

RS AGGARWAL CLASS 9 Chapter 2 POLYNOMIALS EXERCISE 2B

 EXERCISE 2B

PAGE NO-78

Question 1:

If p(x) = 5 − 4x + 2x2, find (i) p(0), (ii) p(3), (iii) p(−2)

Answer 1:

(i) p(x)=5-4x+2x2p(0)=(5-4×0+2×02)(i) p(x)=5-4x+2x2p(0)=(5-4×0+2×02)
        =(5-0+0)=5=(5-0+0)=5

(ii) p(x)=5-4x+2x2p(3)=(5-4×3+2×32)(ii) p(x)=5-4x+2x2p(3)=(5-4×3+2×32)
        =(5-12+18)=11=(5-12+18)=11

(iii) p(x)=5-4x+2x2p(-2)=[5-4×(-2)+2×(-2)2] (iii) p(x)=5-4x+2x2p(-2)=[5-4×(-2)+2×(-2)2]            
          =(5+8+8)=21=(5+8+8)=21

Question 2:

If p(y) = 4 + 3yy2 + 5y3, find (i) p(0), (ii) p(2), (iii) p(−1).

Answer 2:

(i) p(y)=4+3y-y2+5y3p(0)=(4+3×0-02+5×03)(i) p(y)=4+3y-y2+5y3p(0)=(4+3×0-02+5×03)
        =(4+0-0+0)=4=(4+0-0+0)=4

(ii) p(y)=4+3y-y2+5y3p(2)=(4+3×2-22+5×23)(ii) p(y)=4+3y-y2+5y3p(2)=(4+3×2-22+5×23)
        =(4+6-4+40)=46=(4+6-4+40)=46

(iii) p(y)=4+3y-y2+5y3p(-1)=[4+3×(-1)-(-1)2+5×(-1)3](iii) p(y)=4+3y-y2+5y3p(-1)=[4+3×(-1)-(-1)2+5×(-1)3]
          =(4-3-1-5)=-5=(4-3-1-5)=-5

Question 3:

If f(t) = 4t2 − 3t + 6, find (i) f(0), (ii) f(4), (iii) f(−5).

Answer 3:

(i) f(t)=4t2-3t+6f(0)=(4×02-3×0+6)(i) f(t)=4t2-3t+6f(0)=(4×02-3×0+6)
       =(0-0+6)=6=(0-0+6)=6

(ii) f(t)=4t2-3t+6f(4)=(4×42-3×4+6)(ii) f(t)=4t2-3t+6f(4)=(4×42-3×4+6)
        =(64-12+6)=58=(64-12+6)=58

(iii) f(t)=4t2-3t+6f(-5)=[4×(-5)2-3×(-5)+6](iii) f(t)=4t2-3t+6f(-5)=[4×(-5)2-3×(-5)+6]
          =(100+15+6)=121=(100+15+6)=121

Question 4:

If p(x)=x3-3x2+2xp(x)=x3-3x2+2x, find p(0), p(1), p(2). What do you conclude?

Answer 4:


p(x)=x3-3x2+2xp(x)=x3-3x2+2x      .....(1)

Putting x = 0 in (1), we get

p(0)=03-3×02+2×0=0p(0)=03-3×02+2×0=0

Thus, x = 0 is a zero of p(x).

Putting x = 1 in (1), we get

p(1)=13-3×12+2×1=1-3+2=0p(1)=13-3×12+2×1=1-3+2=0

Thus, x = 1 is a zero of p(x).

Putting x = 2 in (1), we get

p(2)=23-3×22+2×2=8-3×4+4=8-12+4=0p(2)=23-3×22+2×2=8-3×4+4=8-12+4=0

Thus, x = 2 is a zero of p(x).

Question 5:

If p(x) = x3 + x2 – 9x – 9, find p(0), p(3), p(–3) and p(–1). What do you conclude about the zero of p(x)? Is 0 a zero of p(x)?

Answer 5:


p(x) = x3 + x2 – 9x – 9         .....(1)

Putting x = 0 in (1), we get

p(0) = 03 + 02 – 9 × 0 – 9 = 0 + 0 – 0 – 9 = –9 ≠ 0

Thus, x = 0 is not a zero of p(x).

Putting x = 3 in (1), we get

p(3) = 33 + 32 – 9 × 3 – 9 = 27 + 9 – 27 – 9 = 0

Thus, x = 3 is a zero of p(x).

Putting x = –3 in (1), we get

p(–3) = (–3)3 + (–3)2 – 9 × (–3) – 9 = –27 + 9 + 27 – 9 = 0

Thus, x = –3 is a zero of p(x).

Putting x = –1 in (1), we get

p(–1) = (–1)3 + (–1)2 – 9 × (–1) – 9 = –1 + 1 + 9 – 9 = 0

Thus, x = –1 is a zero of p(x).

Question 6:

Verify that:
(i) 4 is a zero of the polynomial p(x) = x − 4.
(ii) −3 is a zero of the polynomial q(x) = x + 3.
(iii) 2525is a zero of the polynomial, f(x) = 2 − 5x.
(iv) -12-12is a zero of the polynomial g(y) = 2y + 1.

Answer 6:

(i) p(x)=x-4p(4)=4-4(i) p(x)=x-4p(4)=4-4
         = 0
Hence, 4 is the zero of the given polynomial.

(ii) p(x)=(-3)+3p(3)=0(ii) p(x)=(-3)+3p(3)=0
Hence, 3 is the zero of the given polynomial.

(iii) p(x)=2-5xp(25)=2-5×(25)(iii) p(x)=2-5xp(25)=2-5×(25)
          =2-2=0=2-2=0

Hence, 2525 is the zero of the given polynomial.

(iv) p(y)=2y+1p(-12)=2×(-12)+1                =-1+1                =0(iv) p(y)=2y+1p(-12)=2×(-12)+1                =-1+1                =0

Hence, -12-12 is the zero of the given polynomial.

PAGE NO-79

Question 7:

Verify that
(i) 1 and 2 are the zeros of the polynomial p(x) = x2 − 3x + 2.
(ii) 2 and −3 are the zeros of the polynomial q(x) = x2 + x − 6.
(iii) 0 and 3 are the zeros of the polynomial r(x) = x2 − 3x.

Answer 7:

(i) p(x)=x2-3x+2=(x-1)(x-2)p(1)=(1-1)×(1-2)(i) p(x)=x2-3x+2=(x-1)(x-2)p(1)=(1-1)×(1-2)
        =0×(-1)=0=0×(-1)=0
Also,
p(2)=(2-1)(2-2)p(2)=(2-1)(2-2)
     =(-1)×0=0=(-1)×0=0

Hence, 1 and 2 are the zeroes of the given polynomial.

(ii) p(x)=x2+x-6p(2)=22+2-6(ii) p(x)=x2+x-6p(2)=22+2-6
        =4-4=0=4-4=0
Also,
p(-3)=(-3)2+(-3)-6        =9-9        =0p(-3)=(-3)2+(-3)-6        =9-9        =0

Hence, 2 and -3-3 are the zeroes of the given polynomial.

(iii) p(x)=x2-3xp(0)=02-3×0(iii) p(x)=x2-3xp(0)=02-3×0

Also,
p(3)=32-3×3      =9-9      =0p(3)=32-3×3      =9-9      =0

Hence, 0 and 3 are the zeroes of the given polynomial.

Question 8:

Find the zero of the polynomial:
(i) p(x) = x − 5
(ii) q(x) = x + 4
(iii) r(x) = 2x + 5
(iv) f(x) = 3x + 1
(v) g(x) = 5 − 4x
(vi) h(x) = 6x − 2
(vii) p(x) = ax, a ≠ 0
(viii) q(x) = 4x

Answer 8:

(i) p(x)=0x-5=0x=5Hence, 5 is the zero of the polynomial p(x).(ii) q(x)=0x+4=0x=-4Hence, -4 is the zero of the polynomial q(x).(iii) r(x)=02x+5=0t=-52Hence, -52 is the zero of the polynomial p(t).(i) p(x)=0x-5=0x=5Hence, 5 is the zero of the polynomial p(x).(ii) q(x)=0x+4=0x=-4Hence, -4 is the zero of the polynomial q(x).(iii) r(x)=02x+5=0t=-52Hence, -52 is the zero of the polynomial p(t).

(iv) f(x)=03x+1=0x=-13Hence, -13 is the zero of the polynomial f(x).(v) g(x)=05-4x=0x=54Hence, 54 is the zero of the polynomial g(x).(vi) h(x)=06x-2=0x=26=13Hence, 13 is the zero of the polynomial h(x).(iv) f(x)=03x+1=0x=-13Hence, -13 is the zero of the polynomial f(x).(v) g(x)=05-4x=0x=54Hence, 54 is the zero of the polynomial g(x).(vi) h(x)=06x-2=0x=26=13Hence, 13 is the zero of the polynomial h(x).

(vii) p(x)=0ax=0x=0Hence, 0 is the zero of the polynomial p(x).(viii) q(x)=04x=0x=0Hence, 0 is the zero of the polynomial q(x).(vii) p(x)=0ax=0x=0Hence, 0 is the zero of the polynomial p(x).(viii) q(x)=04x=0x=0Hence, 0 is the zero of the polynomial q(x).

Question 9:

If 2 and 0 are the zeros of the polynomial f(x)=2x3-5x2+ax+bf(x)=2x3-5x2+ax+b then find the values of a and b.
Hint f(2) = 0 and f(0) = 0.

Answer 9:


It is given that 2 and 0 are the zeroes of the polynomial f(x)=2x3-5x2+ax+bf(x)=2x3-5x2+ax+b.
∴ f(2) = 0
2×23-5×22+a×2+b=016-20+2a+b=0-4+2a+b=02a+b=4            .....(1)2×23-5×22+a×2+b=016-20+2a+b=0-4+2a+b=02a+b=4            .....(1)
Also,
f(0) = 0
2×03-5×02+a×0+b=00-0+0+b=0b=02×03-5×02+a×0+b=00-0+0+b=0b=0
Putting b = 0 in (1), we get
2a+0=42a=4a=22a+0=42a=4a=2
Thus, the values of a and b are 2 and 0, respectively.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *