EXERCISE 2B
Question 1:
If p(x) = 5 − 4x + 2x2, find (i) p(0), (ii) p(3), (iii) p(−2)
Answer 1:
(i) p(x)=5-4x+2x2⇒p(0)=(5-4×0+2×02)(i) p(x)=5-4x+2x2⇒p(0)=(5-4×0+2×02)
=(5-0+0)=5=(5-0+0)=5
(ii) p(x)=5-4x+2x2⇒p(3)=(5-4×3+2×32)(ii) p(x)=5-4x+2x2⇒p(3)=(5-4×3+2×32)
=(5-12+18)=11=(5-12+18)=11
(iii) p(x)=5-4x+2x2⇒p(-2)=[5-4×(-2)+2×(-2)2] (iii) p(x)=5-4x+2x2⇒p(-2)=[5-4×(-2)+2×(-2)2]
=(5+8+8)=21=(5+8+8)=21
Question 2:
If p(y) = 4 + 3y − y2 + 5y3, find (i) p(0), (ii) p(2), (iii) p(−1).
Answer 2:
(i) p(y)=4+3y-y2+5y3⇒p(0)=(4+3×0-02+5×03)(i) p(y)=4+3y-y2+5y3⇒p(0)=(4+3×0-02+5×03)
=(4+0-0+0)=4=(4+0-0+0)=4
(ii) p(y)=4+3y-y2+5y3⇒p(2)=(4+3×2-22+5×23)(ii) p(y)=4+3y-y2+5y3⇒p(2)=(4+3×2-22+5×23)
=(4+6-4+40)=46=(4+6-4+40)=46
(iii) p(y)=4+3y-y2+5y3⇒p(-1)=[4+3×(-1)-(-1)2+5×(-1)3](iii) p(y)=4+3y-y2+5y3⇒p(-1)=[4+3×(-1)-(-1)2+5×(-1)3]
=(4-3-1-5)=-5=(4-3-1-5)=-5
Question 3:
If f(t) = 4t2 − 3t + 6, find (i) f(0), (ii) f(4), (iii) f(−5).
Answer 3:
(i) f(t)=4t2-3t+6⇒f(0)=(4×02-3×0+6)(i) f(t)=4t2-3t+6⇒f(0)=(4×02-3×0+6)
=(0-0+6)=6=(0-0+6)=6
(ii) f(t)=4t2-3t+6⇒f(4)=(4×42-3×4+6)(ii) f(t)=4t2-3t+6⇒f(4)=(4×42-3×4+6)
=(64-12+6)=58=(64-12+6)=58
(iii) f(t)=4t2-3t+6⇒f(-5)=[4×(-5)2-3×(-5)+6](iii) f(t)=4t2-3t+6⇒f(-5)=[4×(-5)2-3×(-5)+6]
=(100+15+6)=121=(100+15+6)=121
Question 4:
If p(x)=x3-3x2+2xp(x)=x3-3x2+2x, find p(0), p(1), p(2). What do you conclude?
Answer 4:
p(x)=x3-3x2+2xp(x)=x3-3x2+2x .....(1)
Putting x = 0 in (1), we get
p(0)=03-3×02+2×0=0p(0)=03-3×02+2×0=0
Thus, x = 0 is a zero of p(x).
Putting x = 1 in (1), we get
p(1)=13-3×12+2×1=1-3+2=0p(1)=13-3×12+2×1=1-3+2=0
Thus, x = 1 is a zero of p(x).
Putting x = 2 in (1), we get
p(2)=23-3×22+2×2=8-3×4+4=8-12+4=0p(2)=23-3×22+2×2=8-3×4+4=8-12+4=0
Thus, x = 2 is a zero of p(x).
Question 5:
If p(x) = x3 + x2 – 9x – 9, find p(0), p(3), p(–3) and p(–1). What do you conclude about the zero of p(x)? Is 0 a zero of p(x)?
Answer 5:
p(x) = x3 + x2 – 9x – 9 .....(1)
Putting x = 0 in (1), we get
p(0) = 03 + 02 – 9 × 0 – 9 = 0 + 0 – 0 – 9 = –9 ≠ 0
Thus, x = 0 is not a zero of p(x).
Putting x = 3 in (1), we get
p(3) = 33 + 32 – 9 × 3 – 9 = 27 + 9 – 27 – 9 = 0
Thus, x = 3 is a zero of p(x).
Putting x = –3 in (1), we get
p(–3) = (–3)3 + (–3)2 – 9 × (–3) – 9 = –27 + 9 + 27 – 9 = 0
Thus, x = –3 is a zero of p(x).
Putting x = –1 in (1), we get
p(–1) = (–1)3 + (–1)2 – 9 × (–1) – 9 = –1 + 1 + 9 – 9 = 0
Thus, x = –1 is a zero of p(x).
Question 6:
Verify that:
(i) 4 is a zero of the polynomial p(x) = x − 4.
(ii) −3 is a zero of the polynomial q(x) = x + 3.
(iii) 2525is a zero of the polynomial, f(x) = 2 − 5x.
(iv) -12-12is a zero of the polynomial g(y) = 2y + 1.
Answer 6:
(i) p(x)=x-4⇒p(4)=4-4(i) p(x)=x-4⇒p(4)=4-4
= 0
Hence, 4 is the zero of the given polynomial.
(ii) p(x)=(-3)+3⇒p(3)=0(ii) p(x)=(-3)+3⇒p(3)=0
Hence, 3 is the zero of the given polynomial.
(iii) p(x)=2-5x⇒p(25)=2-5×(25)(iii) p(x)=2-5x⇒p(25)=2-5×(25)
=2-2=0=2-2=0
Hence, 2525 is the zero of the given polynomial.
(iv) p(y)=2y+1⇒p(-12)=2×(-12)+1 =-1+1 =0(iv) p(y)=2y+1⇒p(-12)=2×(-12)+1 =-1+1 =0
Hence, -12-12 is the zero of the given polynomial.
Question 7:
Verify that
(i) 1 and 2 are the zeros of the polynomial p(x) = x2 − 3x + 2.
(ii) 2 and −3 are the zeros of the polynomial q(x) = x2 + x − 6.
(iii) 0 and 3 are the zeros of the polynomial r(x) = x2 − 3x.
Answer 7:
(i) p(x)=x2-3x+2=(x-1)(x-2)⇒p(1)=(1-1)×(1-2)(i) p(x)=x2-3x+2=(x-1)(x-2)⇒p(1)=(1-1)×(1-2)
=0×(-1)=0=0×(-1)=0
Also,
p(2)=(2-1)(2-2)p(2)=(2-1)(2-2)
=(-1)×0=0=(-1)×0=0
Hence, 1 and 2 are the zeroes of the given polynomial.
(ii) p(x)=x2+x-6⇒p(2)=22+2-6(ii) p(x)=x2+x-6⇒p(2)=22+2-6
=4-4=0=4-4=0
Also,
p(-3)=(-3)2+(-3)-6 =9-9 =0p(-3)=(-3)2+(-3)-6 =9-9 =0
Hence, 2 and -3-3 are the zeroes of the given polynomial.
(iii) p(x)=x2-3x⇒p(0)=02-3×0(iii) p(x)=x2-3x⇒p(0)=02-3×0
Also,
p(3)=32-3×3 =9-9 =0p(3)=32-3×3 =9-9 =0
Hence, 0 and 3 are the zeroes of the given polynomial.
Question 8:
Find the zero of the polynomial:
(i) p(x) = x − 5
(ii) q(x) = x + 4
(iii) r(x) = 2x + 5
(iv) f(x) = 3x + 1
(v) g(x) = 5 − 4x
(vi) h(x) = 6x − 2
(vii) p(x) = ax, a ≠ 0
(viii) q(x) = 4x
Answer 8:
(i) p(x)=0⇒x-5=0⇒x=5Hence, 5 is the zero of the polynomial p(x).(ii) q(x)=0⇒x+4=0⇒x=-4Hence, -4 is the zero of the polynomial q(x).(iii) r(x)=0⇒2x+5=0⇒t=-52Hence, -52 is the zero of the polynomial p(t).(i) p(x)=0⇒x-5=0⇒x=5Hence, 5 is the zero of the polynomial p(x).(ii) q(x)=0⇒x+4=0⇒x=-4Hence, -4 is the zero of the polynomial q(x).(iii) r(x)=0⇒2x+5=0⇒t=-52Hence, -52 is the zero of the polynomial p(t).
(iv) f(x)=0⇒3x+1=0⇒x=-13Hence, -13 is the zero of the polynomial f(x).(v) g(x)=0⇒5-4x=0⇒x=54Hence, 54 is the zero of the polynomial g(x).(vi) h(x)=0⇒6x-2=0⇒x=26=13Hence, 13 is the zero of the polynomial h(x).(iv) f(x)=0⇒3x+1=0⇒x=-13Hence, -13 is the zero of the polynomial f(x).(v) g(x)=0⇒5-4x=0⇒x=54Hence, 54 is the zero of the polynomial g(x).(vi) h(x)=0⇒6x-2=0⇒x=26=13Hence, 13 is the zero of the polynomial h(x).
(vii) p(x)=0⇒ax=0⇒x=0Hence, 0 is the zero of the polynomial p(x).(viii) q(x)=0⇒4x=0⇒x=0Hence, 0 is the zero of the polynomial q(x).(vii) p(x)=0⇒ax=0⇒x=0Hence, 0 is the zero of the polynomial p(x).(viii) q(x)=0⇒4x=0⇒x=0Hence, 0 is the zero of the polynomial q(x).
Question 9:
If 2 and 0 are the zeros of the polynomial f(x)=2x3-5x2+ax+bf(x)=2x3-5x2+ax+b then find the values of a and b.
Hint f(2) = 0 and f(0) = 0.
Answer 9:
It is given that 2 and 0 are the zeroes of the polynomial f(x)=2x3-5x2+ax+bf(x)=2x3-5x2+ax+b.
∴ f(2) = 0
⇒2×23-5×22+a×2+b=0⇒16-20+2a+b=0⇒-4+2a+b=0⇒2a+b=4 .....(1)⇒2×23-5×22+a×2+b=0⇒16-20+2a+b=0⇒-4+2a+b=0⇒2a+b=4 .....(1)
Also,
f(0) = 0
⇒2×03-5×02+a×0+b=0⇒0-0+0+b=0⇒b=0⇒2×03-5×02+a×0+b=0⇒0-0+0+b=0⇒b=0
Putting b = 0 in (1), we get
2a+0=4⇒2a=4⇒a=22a+0=4⇒2a=4⇒a=2
Thus, the values of a and b are 2 and 0, respectively.
No comments:
Post a Comment