MULTIPLE CHOICE QUESTIONS
Question 1:
In a ∆ABC it is given that base = 12 cm and height = 5 cm. Its area is
(a) 60 cm2
(b) 30 cm2
(c) 15√3 cm215√3 cm2
(d) 45 cm2
Answer 1:
(b) 30 cm2
Area of triangle = 12×Base×HeightArea of ∆ABC=12×12×5=30 cm2Area of triangle = 12×Base×HeightArea of ∆ABC=12×12×5=30 cm2
Question 2:
The lengths of three sides of a triangle are 20 cm, 16 cm and 12 cm. The area of the triangle is
(a) 96 cm2
(b) 120 cm2
(c) 144 cm2
(d) 160 cm2
Answer 2:
(a) 96 cm2
Let: a=20 cm, b = 16 cm and c=12 cms= a+b+c2=20+16+122=24 cmBy Heron's formula, we have:Area of triangle = √s(s-a)(s-b)(s-c)=√24(24-20)(24-16)(24-12)=√24×4×8×12=√6×4×4×4×4×6=6×4×4=96 cm2Let: a=20 cm, b = 16 cm and c=12 cms= a+b+c2=20+16+122=24 cmBy Heron's formula, we have:Area of triangle = √s(s-a)(s-b)(s-c)=√24(24-20)(24-16)(24-12)=√24×4×8×12=√6×4×4×4×4×6=6×4×4=96 cm2
Question 3:
Each side of an equilateral triangle measure 8 cm. The area of the triangle is
(a) 8√3 cm28√3 cm2
(b) 16√3 cm216√3 cm2
(c) 32√3 cm232√3 cm2
(d) 48 cm2
Answer 3:
(b) 16√3 cm216√3 cm2
Area of equilateral triangle = √34×(Side)2=√34×(8)2=√34×64=16√3 cm2Area of equilateral triangle = √34×(Side)2=√34×(8)2=√34×64=16√3 cm2
Question 4:
The base of an isosceles triangle is 8 cm long and each of its equal sides measures 6 cm. The area of the triangle is
(a) 16√5 cm216√5 cm2
(b) 8√5 cm28√5 cm2
(c) 16√3 cm216√3 cm2
(d) 8√3 cm28√3 cm2
Answer 4:
(b) 8√5 cm28√5 cm2
Area of isosceles triangle = b4√4a2-b2Here, a= 6 cm and b=8 cmThus, we have:84×√4(6)2-82=84×√144-64=84×√80=84×4√5=8√5 cm2Area of isosceles triangle = b4√4a2-b2Here, a= 6 cm and b=8 cmThus, we have:84×√4(6)2-82=84×√144-64=84×√80=84×4√5=8√5 cm2
Question 5:
The base of an isosceles triangle is 6 cm and each of its equal sides is 5 cm. The height of the triangle is
(a) 8 cm
(b) √30 cm√30 cm
(c) 4 cm
(d) √11 cm√11 cm
Answer 5:
(c) 4 cm
Height of isosceles triangle = 12√4a2-b2=12√4(5)2-62 (a=5 cm and b=6 cm)=12×√100-36=12×√64=12×8=4 cmHeight of isosceles triangle = 12√4a2-b2=12√4(5)2-62 (a=5 cm and b=6 cm)=12×√100-36=12×√64=12×8=4 cm
Question 6:
Each of the two equal sides of an isosceles right triangle is 10 cm long. Its area is
(a) 5√10 cm25√10 cm2
(b) 50 cm2
(c) 10√3 cm210√3 cm2
(d) 75 cm2
Answer 6:
(b) 50 cm2
Here, the base and height of the triangle are 10 cm and 10 cm, respectively.
Thus, we have:
Area of triangle = 12×Base×Height=12×10×10=50 cm2Area of triangle = 12×Base×Height=12×10×10=50 cm2
Question 7:
Each side of an equilateral triangle is 10 cm long. The height of the triangle is
(a) 10√3 cm
(b) 5√3 cm
(c) 10√2 cm
(d) 5 cm
Answer 7:
(b) 5√3 cm
Height of equilateral triangle=√32×Side=√32×10=5√3 cm
Question 8:
The height of an equilateral triangle is 6 cm. Its area is
(a) 12√3 cm2
(b) 6√3 cm2
(c) 12√2 cm2
(d) 18 cm2
Answer 8:
(a) 12√3 cm2
Height of equilateral triangle = √32×Side⇒6=√32×Side⇒Side=12√3×√3√3=123×√3=4√3 cmNow,Area of equilateral triangle = √34×(Side)2=√34×(4√3)2=√34×48=12√3 cm2
Question 9:
The lengths of the three sides of a triangular field are 40 m, 24 m and 32 m respectively. The area of the triangle is
(a) 480 m2
(b) 320 m2
(c) 384 m2
(d) 360 m2
Answer 9:
(c) 384 m2
Let: a=40 m, b = 24 m and c=32 ms= a+b+c2=40+24+322=48 mBy Heron's formula, we have:Area of triangle = √s(s-a)(s-b)(s-c)=√48(48-40)(48-24)(48-32)=√48×8×24×16=√24×2×8×24×8×2=24×8×2=384 m2
Question 10:
The sides of a triangle are in the ratio 5 : 12 : 13 and its perimeter is 150 cm. The area of the triangle is
(a) 375 cm2
(b) 750 cm2
(c) 250 cm2
(d) 500 cm2
Answer 10:
(b) 750 cm2
Let the sides of the triangle be 5x cm, 12x cm and 13x cm.
Perimeter = Sum of all sides
or, 150 = 5x + 12x + 13x
or, 30x = 150
or, x = 5
Thus, the sides of the triangle are 5×5 cm, 12×5 cm and 13×5 cm, i.e., 25 cm, 60 cm and 65 cm.
Now,
Let: a=25 cm, b = 60 cm and c=65 cms= 1502=75 cmBy Heron's formula, we have:Area of triangle = √s(s-a)(s-b)(s-c)=√75(75-25)(75-60)(75-65)=√75×50×15×10=√15×5×5×10×15×10=15×5×10=750 cm2
Question 11:
The lengths of the three sides of a triangle are 30 cm, 24 cm and 18 cm respectively. The length of the altitude of the triangle corresponding to the smallest side is
(a) 24 cm
(b) 18 cm
(c) 30 cm
(d) 12 cm
Answer 11:
(a) 24 cm
Let:a=30 cm, b = 24 cm and c=18 cms= a+b+c2=30+24+182=36 cmOn applying Heron's formula, we get:Area of triangle = √s(s-a)(s-b)(s-c)=√36(36-30)(36-24)(36-18)=√36×6×12×18=√12×3×12×6×3=12×3×6=216 cm2
The smallest side is 18 cm.
Hence, the altitude of the triangle corresponding to 18 cm is given by:
Area of triangle = 216 cm2⇒12×Base×Height = 216⇒Height = 216×218=24 cm
Question 12:
The base of an isosceles triangle is 16 cm and its area is 48 cm2. The perimeter of the triangle is
(a) 41 cm
(b) 36 cm
(c) 48 cm
(d) 324 cm
Answer 12:
(b) 36 cm
Let △PQR be an isosceles triangle and PX⊥QR.
Now,
Area of triangle =48 cm2 ⇒12×QR×PX = 48⇒h =9616=6 cmAlso, QX = 12×24 = 12 cm and PX = 12 cm
PQ=√QX2+PX2a=√82+62=√64+36=√100=10 cm
∴ Perimeter = (10 + 10 + 16) cm = 36 cm
Question 13:
The area of an equilateral triangle is 36√3 cm2. Its perimeter is
(a) 36 cm
(b) 12√3 cm
(c) 24 cm
(d) 30 cm
Answer 13:
(a) 36 cm
Area of equilateral triangle = √34×(Side)2⇒√34×(Side)2 =36√3
⇒(Side)2=144⇒Side=12 cm
Now,
Perimeter
Question 14:
Each of the equal sides of an isosceles triangle is 13 cm and its base is 24 cm. The area of the triangle is
(a) 156 cm2
(b) 78 cm2
(c) 60 cm2
(d) 120 cm2
Answer 14:
(c) 60 cm2
Area of isosceles triangle = b4√4a2-b2Here, a= 13 cm and b=24 cmThus, we have:244×√4(13)2-242=6×√676-576=6×√100=6×10=60 cm2
Question 15:
The base of a right triangle. is 48 cm and its hypotenuse is 50 cm long. The area of the triangle is
(a) 168 cm2
(b) 252 cm2
(c) 336 cm2
(d) 504 cm2
Answer 15:
(c) 336 cm2
Let △PQR be a right-angled triangle and PQ⊥QR.
Now,
PQ=√PR2-QR2=√502-482=√2500-2304=√196=14 cm
∴Area of triangle =12×QR×PQ =12×48×14=336 cm2
Question 16:
The area of an equilateral triangle is 81√3 cm2. Its height is
(a) 9√3 cm
(b) 6√3 cm
(c) 18√3 cm
(d) 9 cm
Answer 16:
(a) 9√3 cm
Area of equilateral triangle = 81√3 cm2⇒√34×(Side)2=81√3⇒(Side)2=81×4⇒(Side)2=324⇒Side=18 cmNow,Height = √32×Side=√32×18=9√3 cm
No comments:
Post a Comment