Processing math: 64%

RS AGGARWAL CLASS 9 Chapter 1 Number System Exercise 1F

 Exercise 1F

PAGE NO-43

Question 1:

Write the rationalising factor of the denominator in 12+312+3.

Answer 1:


12+312+3
=13+2×3232=32(3)2(2)2=13+2×3-23-2=3-2(3)2-(2)2
=3232=321=3-23-2=3-21
Here, the denominator i.e. 1 is a rational number. Thus, the rationalising factor of the denominator in 12+312+3 is 323-2.

Question 2:

Rationalise the denominator of each of the following.
(i) 1717                     (ii) 523523                   (iii) 12+312+3
(iv) 15215-2               (v) 15+3215+32              (vi) 17617-6
(vii) 4117411-7        (viii) 1+2221+22-2              (ix) 3223+223-223+22

Answer 2:

(i) 1717
On multiplying the numerator and denominator of the given number by 77, we get:

 17 = 17×77 = 7717 = 17×77 = 77

(ii) 523523
On multiplying the numerator and denominator of the given number by 33, we get:

 523 = 523×33 = 156523 = 523×33 = 156

(iii) 12+312+3
On multiplying the numerator and denominator of the given number by 232-3, we get:
 12+3 = 12+3×2323 =23(2)2(3)2= 2343=231 = 2312+3 = 12+3×2-32-3 =2-3(2)2-(3)2= 2-34-3=2-31 = 2-3

(iv) 15215-2
On multiplying the numerator and denominator of the given number by 5+25+2, we get:
 152 = 152×5+25+2 =5+2(5)2(2)2= 5+254=5+21 = 5+215-2 = 15-2×5+25+2 =5+2(5)2-(2)2= 5+25-4=5+21 = 5+2

(v) 15+3215+32
On multiplying the numerator and denominator of the given number by 5325-32, we get:
 15+32 = 15+32×532532 =532(5)2(32)2= 5322518=5327 15+32 = 15+32×5-325-32 =5-32(5)2-(32)2= 5-3225-18=5-327 

(vi) 17617-6
Multiplying the numerator and denominator by 7+67+6, we get
176=176×7+67+6=7+6(7)2(6)217-6=17-6×7+67+6=7+6(7)2-(6)2
=7+676=7+6=7+67-6=7+6

(vii) 4117411-7     
Multiplying the numerator and denominator by 11+711+7, we get
4117=4117×11+711+7=4(11+7)(11)2(7)2411-7=411-7×11+711+7=4(11+7)(11)2-(7)2 
=4(11+7)117=4(11+7)4=11+7=4(11+7)11-7=4(11+7)4=11+7

(viii) 1+2221+22-2 
Multiplying the numerator and denominator by 2+22+2, we get 
1+222=1+222×2+22+2=2+2+22+2(2)2(2)21+22-2=1+22-2×2+22+2=2+2+22+2(2)2-(2)2        
=4+3242=4+322=4+324-2=4+322
(ix) 3223+223-223+22
Multiplying the numerator and denominator by 3223-22, we get 
3223+22=3223+22×322322=(322)2(3)2(22)23-223+22=3-223+22×3-223-22=(3-22)2(3)2-(22)2
=9+8-1229-8              [(a-b)2=a2+b2-2ab]=17-122

Question 3:

It being given that 2=1.414, 3=1.732, 5=2.236 and 10=3.162, find the value of three places of decimals, of each of the following.
(i) 25

(ii) 2-33

(iii) 10-52

Answer 3:


(i)
 25=25×55=255
=2×2.2365=0.894
(ii) 
2-33=2-33×33=23-33
=2×1.732-33=0.155
(iii)
 10-52=10-52×22=2(10-5)2
=1.414×(3.162-2.236)2=0.655

Question 4:

Find rational numbers a and b such that

(i) 2-12+1=a+b2

(ii) 2-52+5=a5+b

(iii) 3+23-2=a+b6

(iv) 5+237+43=a+b3

Answer 4:


(i)
2-12+1=2-12+1×2-12-1=(2-1)2(2)2-12
=2+1-222-1=3-22
2-12+1=3+(-2)2=a+b2a=3, b=-2

(ii)
2-52+5=2-52+5×2-52-5=(2-5)2(2)2-(5)2
=4+5-454-5=9-45-1=-9+45
2-52+5=45+(-9)=a5+ba=4, b=-9

(iii)
3+23-2=3+23-2×3+23+2=(3+2)2(3)2-(2)2
=3+2+2×3×23-2=5+26
3+23-2=5+26=a+b6a=5, b=2

(iv)
5+237+43=5+237+43×7-437-43=35-203+143-24(7)2-(43)2
=11-6349-48=11-63
5+237+43=11+(-6)3=a+b3a=11,b=-6

Question 5:

It being given  that 3=1.732, 5=2.236, 6=2.449  and 10=3.162, find to three places of decimal, the value of each of the following.

(i) 16+5

(ii) 65+3

(iii) 143-35

(iv) 3+53-5

(v) 1+232-3

(vi) 5+25-2

Answer 5:


(i)
 16+5=16+5×6-56-5=6-5(6)2-(5)2
=6-56-5=6-5=2.449-2.236
=0.213
(ii) 
65+3=65+3×5-35-3=6(5-3)(5)2-(3)2
=6(5-3)5-3=6(5-3)2=3(5-3)
=3×(2.236-1.732)=1.512
(iii)
 143-35=143-35×43+3543+35=43+35(43)2-(35)2
=43+3548-45=4×1.732+3×2.2363=4.545
(iv)
 3+53-5=3+53-5×3+53+5=(3+5)2(3)2-(5)2
=9+5+659-5=14+654=7+352
=7+3×2.2362=6.854
(v)
 1+232-3=1+232-3×2+32+3=2+3+43+6(2)2-(3)2
=8+534-3=8+53=8+5×1.732
=16.660
(vi)
 5+25-2=5+25-2×5+25+2=(5+2)2(5)2-(2)2
=5+2+2×5×25-2=7+2103=7+2×3.1623PAGE NO -44=4.441

Question 6:

Simplify by rationalising the denominator.

(i) 73-5248+1873-5248+18

(ii) 26-535-2626-535-26

Answer 6:


(i) 
73-5248+18=73-5216×3+9×2=73-5243+3273-5248+18=73-5216×3+9×2=73-5243+32
=73-5243+32×43-3243-32=73×43-73×32-52×43+52×32(43)2-(32)2=84-216-206+3048-18=73-5243+32×43-3243-32=73×43-73×32-52×43+52×32(43)2-(32)2=84-216-206+3048-18
=114-41630=114-41630
(ii)
26-535-26=26-535-26×35+2635+26=26×35+26×26-5×35-5×26(35)2-(26)226-535-26=26-535-26×35+2635+26=26×35+26×26-5×35-5×26(35)2-(26)2
=630+24-15-23045-24=9+43021=630+24-15-23045-24=9+43021

Question 7:

Simplify

(i) 4+54-5+4-54+54+54-5+4-54+5

(ii) 13+2-25-3-32-513+2-25-3-32-5

(iii) 2+32-3+2-32+3+3-13+12+32-3+2-32+3+3-13+1

(iv) 262+3+626+3-836+2262+3+626+3-836+2

Answer 7:

(i)
4+54-5+4-54+5=4+54-5×4+54+5+4-54+5×4-54-5=(4+5)2(4)2-(5)2+(4-5)2(4)2-(5)24+54-5+4-54+5=4+54-5×4+54+5+4-54+5×4-54-5=(4+5)2(4)2-(5)2+(4-5)2(4)2-(5)2
=16+5+85+16+5-8516-5=4211=16+5+85+16+5-8516-5=4211
(ii)
13+2-25-3-32-5=13+2×3-23-2-25-3×5+35+3-32-5×2+52+5=3-2(3)2-(2)2-2(5+3)(5)2-(3)2-3(2+5)(2)2-(5)213+2-25-3-32-5=13+2×3-23-2-25-3×5+35+3-32-5×2+52+5=3-2(3)2-(2)2-2(5+3)(5)2-(3)2-3(2+5)(2)2-(5)2
=3-23-2-2(5+3)5-3-3(2+5)2-5=3-2-2(5+3)2-3(2+5)(-3)=3-2-5-3+2+5=3-23-2-2(5+3)5-3-3(2+5)2-5=3-2-2(5+3)2-3(2+5)(-3)=3-2-5-3+2+5
=0=0
(iii)
2+32-3+2-32+3+3-13+1=2+32-3×2+32+3+2-32+3×2-32-3+3-13+1×3-13-1=(2+3)2(2)2-(3)2+(2-3)2(2)2-(3)2+(3-1)2(3)2-122+32-3+2-32+3+3-13+1=2+32-3×2+32+3+2-32+3×2-32-3+3-13+1×3-13-1=(2+3)2(2)2-(3)2+(2-3)2(2)2-(3)2+(3-1)2(3)2-12
=4+3+434-3+4+3-434-3+3+1-233-1=7+43+7-43+4-232=14+2-3=4+3+434-3+4+3-434-3+3+1-233-1=7+43+7-43+4-232=14+2-3
=16-3=16-3
(iv)
262+3+626+3-836+2=263+2×3-23-2+626+3×6-36-3-836+2×6-26-2=26×3-26×2(3)2-(2)2+62×6-62×3(6)2-(3)2-83×6-83×2(6)2-(2)2262+3+626+3-836+2=263+2×3-23-2+626+3×6-36-3-836+2×6-26-2=26×3-26×2(3)2-(2)2+62×6-62×3(6)2-(3)2-83×6-83×2(6)2-(2)2
=218-2123-2+612-666-3-818-866-2=218-212+612-663-818-864=218-212+212-26-218+26=218-2123-2+612-666-3-818-866-2=218-212+612-663-818-864=218-212+212-26-218+26
=0=0

Question 8:

Prove that
(i) 13+7+17+5+15+3+13+1=113+7+17+5+15+3+13+1=1
(ii) 11+2+12+3+13+4+14+5+15+6+16+7+17+8+18+9=211+2+12+3+13+4+14+5+15+6+16+7+17+8+18+9=2

Answer 8:


(i)
13+7+17+5+15+3+13+1=13+7×3-73-7+17+5×7-57-5+15+3×5-35-3+13+1×3-13-1=3-7(3)2-(7)2+7-5(7)2-(5)2+5-3(5)2-(3)2+3-1(3)2-1213+7+17+5+15+3+13+1=13+7×3-73-7+17+5×7-57-5+15+3×5-35-3+13+1×3-13-1=3-7(3)2-(7)2+7-5(7)2-(5)2+5-3(5)2-(3)2+3-1(3)2-12
=3-79-7+7-57-5+5-35-3+3-13-1=3-72+7-52+5-32+3-12=3-7+7-5+5-3+3-12=3-79-7+7-57-5+5-35-3+3-13-1=3-72+7-52+5-32+3-12=3-7+7-5+5-3+3-12
=22=1=22=1
(ii)
11+2+12+3+13+4+14+5+15+6+16+7+17+8+18+9=11+2×1-21-2+12+3×2-32-3+13+4×3-43-4+14+5×4-54-5+15+6×5-65-6+16+7×6-76-7+17+8×7-87-8+18+9×8-98-911+2+12+3+13+4+14+5+15+6+16+7+17+8+18+9=11+2×1-21-2+12+3×2-32-3+13+4×3-43-4+14+5×4-54-5+15+6×5-65-6+16+7×6-76-7+17+8×7-87-8+18+9×8-98-9
=1-212-(2)2+2-3(2)2-(3)2+3-4(3)2-(4)2+4-5(4)2-(5)2+5-6(5)2-(6)2+6-7(6)2-(7)2+7-8(7)2-(8)2+8-9(8)2-(9)2=1-21-2+2-32-3+3-43-4+4-54-5+5-65-6+6-76-7+7-87-8+8-98-9=1-2(-1)+2-3(-1)+3-4(-1)+4-5(-1)+5-6(-1)+6-7(-1)+7-8(-1)+8-9(-1)=1-212-(2)2+2-3(2)2-(3)2+3-4(3)2-(4)2+4-5(4)2-(5)2+5-6(5)2-(6)2+6-7(6)2-(7)2+7-8(7)2-(8)2+8-9(8)2-(9)2=1-21-2+2-32-3+3-43-4+4-54-5+5-65-6+6-76-7+7-87-8+8-98-9=1-2(-1)+2-3(-1)+3-4(-1)+4-5(-1)+5-6(-1)+6-7(-1)+7-8(-1)+8-9(-1)
=2-1+3-2+4-3+5-4+6-5+7-6+8-7+9-8=3-1=2=2-1+3-2+4-3+5-4+6-5+7-6+8-7+9-8=3-1=2

Question 9:

Find the values of a and b if
7+353+5-7-353-5=a+b5

Answer 9:


7+353+5-7-353-5=7+353+5×3-53-5-7-353-5×3+53+5=7(3-5)+35(3-5)32-(5)2-7(3+5)-35(3+5)32-(5)27+353+573535=7+353+5×353573535×3+53+5=7(35)+35(35)32(5)27(3+5)35(3+5)32(5)27+353+5-7-353-5=7+353+5×3-53-5-7-353-5×3+53+5=7(3-5)+35(3-5)32-(5)2-7(3+5)-35(3+5)32-(5)2
=21-75+95-159-5-21+75-95-159-5=6+254-6-254=2175+95159521+75951595=6+2546254=21-75+95-159-5-21+75-95-159-5=6+254-6-254
=6+25-6+254=454=5=6+256+254=454=5=6+25-6+254=454=5
7+353+5-7-353-5=0+1×57+353+573535=0+1×57+353+5-7-353-5=0+1×5
Comparing with the given expression, we get

a = 0 and b = 1

Thus, the values of a and b are 0 and 1, respectively.

Question 10:

Simplify 13-1113+11+13+1113-11.

Answer 10:


13-1113+11+13+1113-11=13-1113+11×13-1113-11+13+1113-11×13+1113+11=(13-11)2(13)2-(11)2+(13+11)2(13)2-(11)2
=13+11-2×13×1113-11+13+11+2×13×1113-11=24-21432+24+21432=24-2143+24+21432
=482=24

Question 11:

If x=3+22, check whether x+1x is rational or irrational.

Answer 11:


x=3+22                 .....(1)
1x=13+221x=13+22×3-223-221x=3-2232-(22)2
1x=3-229-81x=3-22              .....(2)
Adding (1) and (2), we get
x+1x=3+22+3-22=6, which is a rational number
Thus, x+1x is rational.

Question 12:

If x=2-3, find value of x-1x3.

Answer 12:


x=2-3                  .....11x=12-31x=12-3×2+32+3
1x=2+322-321x=2+34-31x=2+3                .....2
Subtracting (2) from (1), we get
x-1x=2-3-2+3x-1x=2-3-2-3=-23x-1x3=-233=-243
Thus, the value of x-1x3 is -243.

Question 13:

If x=9-45, find the value of x2+1x2.

Answer 13:


x=9-45                .....11x=19-451x=19-45×9+459+45
1x=9+4592-4521x=9+4581-801x=9+45             .....2
Adding (1) and (2), we get
x+1x=9-45+9+45x+1x=18
Squaring on both sides, we get
x+1x2=182x2+1x2+2×x×1x=324x2+1x2=324-2=322
Thus, the value of x2+1x2 is 322.

Question 14:

If x=5-212, find the value of x+1x.

Answer 14:


x=5-212                    .....11x=15-2121x=25-21
1x=25-21×5+215+211x=25+2152-2121x=25+2125-21
1x=25+2141x=5+212               .....2
Adding (1) and (2), we get
x+1x=5-212+5+212x+1x=5-21+5+212x+1x=102=5
Thus, the value of x+1x is 5.

Question 15:

If a=3-22, find the value of a2-1a2.

Answer 15:


a=3-22a2=3-222a2=9+8-122a2=17-122               .....1
1a2=117-1221a2=117-122×17+12217+1221a2=17+122172-1222
1a2=17+122289-2881a2=17+122              .....2
Subtracting (2) from (1), we get
a2-1a2=17-122-17+122a2-1a2=17-122-17-122a2-1a2=-242
Thus, the value of a2-1a2 is -242.


PAGE NO-45

Question 16:

If x=13+23, find the value of x1x.

Answer 16:


x=13+23                 .....(1)1x=113+231x=113+23×13231323
1x=1323(13)2(23)21x=132313121x=1323              .....(2)
Subtracting (2) from (1), we get
x1x=(13+23) (1323 )x1x=13+23 13+23x1x=43 
Thus, the value of  is .

Question 17:

If x=2+3, find the value of x3+1x3.

Answer 17:


x=2+3                  .....11x=12+31x=12+3×2-32-3
1x=2-322-321x=2-34-31x=2-3             .....2
Adding (1) and (2), we get
x+1x=2+3+2-3=4          .....3
Cubing both sides, we get
x+1x3=43x3+1x3+3×x×1xx+1x=64
x3+1x3+3×4=64             [Using (3)]
x3+1x3=64-12=52
Thus, the value of x3+1x3 is 52.

Question 18:

If x=5-35+3 and y=5+35-3, show that x2-y2=-10311.

Answer 18:

Disclaimer: The question is incorrect.

x=5-35+3x=5-35+3×5-35-3x=5-3252-32
x=25+3-10325-3x=28-10322x=14-5311

y=5+35-3y=5+35-3×5+35+3y=5+3252-32
y=25+3+10325-3y=28+10322y=14+5311

x2-y2=14-53112-14+53112=196+75-1403121-196+75+1403121
=271-1403121-271+1403121=271-1403-271-1403121=-2803121
The question is incorrect. Kindly check the question.
The question should have been to show that x-y=-10311.
x-y=14-5311-14+5311=14-53-14-5311=-10311

Question 19:

If a=5+25-2 and b=5-25+2, show that 3a2+4ab-3b2=4+56310.

Answer 19:

According to question,
a=5+25-2 and b=5-25+2

a=5+25-2   =5+25-2×5+25+2   =5+2252-22   =52+22+2525-2   =5+2+2103   =7+2103    ...1b=5-25+2   =5-25+2×5-25-2   =5-2252-22   =52+22-2525-2   =5+2-2103   =7-2103  ...2
Now,
    3a2+4ab-3b2=3a2-b2+4ab=3a+ba-b+4ab=37+2103+7-21037+2103-7-2103+47+2103×7-2103=31434103+472-21029=56310+449-409=56310+4
Hence, 3a2+4ab-3b2=4+56103.

Question 20:

If a=3-23+2 and b=3+23-2, find the value of a2 + b2 – 5ab.

Answer 20:

According to question,
a=3-23+2 and b=3+23-2

a=3-23+2   =3-23+2×3-23-2   =32+22-23232-22   =3+2-263-2   =5-261   =5-26     ....1b=3+23-2   =3+23-2×3+23+2   =32+22+23232-22   =3+2+263-2   =5+261   =5+26      ....2
Now,
    a2+b2-5ab=a-b2-3ab=5-26-5+262-35-265+26=-462-325-24=96-3=93

Hence, the value of a2 + b2 – 5ab is 93.

Question 21:

If p=3-53+5 and q=3+53-5, find the value of p2 + q2.

Answer 21:

According to question,
p=3-53+5 and q=3+53-5

p=3-53+5   =3-53+5×3-53-5   =3-5232-52   =32+52-2359-5   =9+5-654   =14-654    ...(1)q=3+53-5   =3+53-5×3+53+5   =3+5232-52   =32+52+2359-5   =9+5+654   =14+654    ...(2)

Now,
p2+q2=p+q2-2pq            =14-654+14+6542-214-65414+654            =2842-2142-65216            =72-2196-18016            =49-21616            =49-2            =47

Hence, the value of p2 + q2 is 47.

Question 22:

Rationalise the denominator of each of the following.
(i) 17+6-13                 (ii) 33+5-2             (iii) 42+3+7

Answer 22:

i17+6-13=17+6-13×7+6+137+6+13=7+6+137+62-132=7+6+1372+62+276-132=7+6+137+6+242-13=7+6+13242=7+6+13242×4242=76+67+134284=76+67+54684
Hence, the rationalised form is 76+67+54684.
ii33+5-2=33-2+5×3-2-53-2-5=33-2-53-22-52=33-2-532+22-232-52=33-2-53+2-26-5=33-2-5-26=33-2-5-26×66=332-23-30-12=30+23-324
Hence, the rationalised form is 30+23-324.
iii42+3+7=42+3+7×2+3-72+3-7=42+3-72+32-72=42+3-722+32+223-72=42+3-74+3+43-7=42+3-743=2+3-73=2+3-73×33=23+3-213
Hence, the rationalised form is 23+3-213.

Question 23:

Given, 2=1.414 and 6=2.449, find the value of 13-2-1 correct to 3 places of decimal.

Answer 23:


13-2-1=13-2+1×3+2+13+2+1=3+2+132-2+12=3+2+132-22-221-12=3+2+13-2-22-1=3+2+1-22=3+2+1-22×22=6+2+2-4=2.449+2+1.414-4              2=1.414 and 6=2.449=5.863-4=-1.465

Hence, the value of 13-2-1 correct to 3 places of decimal is −1.465.

Question 24:

If x=12-3, find the value of x3 – 2x2 – 7x + 5.

Answer 24:

x=12-3x=12-3×2+32+3x=2+322-32x=2+34-3x=2+3    ...1Now,x2=2+32x2=22+32+223x2=4+3+43x2=7+43    ...2Also,x3=x2.xx3=7+432+3x3=14+73+83+12x3=26+153    ...3

Now,
x3-2x2-7x+5=26+153-27+43-72+3+5    (using 1, 2 and 3)=26+153-14-83-14-73+5=31-28+153-153=3

Hence, the value of x3 – 2x2 – 7x + 5 is 3.

Question 25:

Evaluate 1510+20+40-5-80, it being given that 5=2.236 and 10=3.162.
Hint
1510+20+40-5-80=1510+25+210-5-45=15310-35=510-5

Answer 25:

1510+20+40-5-80=1510+25+210-5-45=15310-35=510-5=510-5×10+510+5=510+5102-52=510+510-5=510+55=10+5=3.162+2.236     (given)=5.398

Hence, 1510+20+40-5-80 = 5.398 .

No comments:

Post a Comment

Contact Form

Name

Email *

Message *