Exercise 1F
Question 1:
Write the rationalising factor of the denominator in 1√2+√31√2+√3.
Answer 1:
1√2+√31√2+√3
=1√3+√2×√3−√2√3−√2=√3−√2(√3)2−(√2)2=1√3+√2×√3-√2√3-√2=√3-√2(√3)2-(√2)2
=√3−√23−2=√3−√21=√3-√23-2=√3-√21
Here, the denominator i.e. 1 is a rational number. Thus, the rationalising factor of the denominator in 1√2+√31√2+√3 is √3−√2√3-√2.
Question 2:
Rationalise the denominator of each of the following.
(i) 1√71√7 (ii) √52√3√52√3 (iii) 12+√312+√3
(iv) 1√5−21√5-2 (v) 15+3√215+3√2 (vi) 1√7−√61√7-√6
(vii) 4√11−√74√11-√7 (viii) 1+√22−√21+√22-√2 (ix) 3−2√23+2√23-2√23+2√2
Answer 2:
(i) 1√71√7
On multiplying the numerator and denominator of the given number by √7√7, we get:
1√7 = 1√7×√7√7 = √771√7 = 1√7×√7√7 = √77
(ii) √52√3√52√3
On multiplying the numerator and denominator of the given number by √3√3, we get:
√52√3 = √52√3×√3√3 = √156√52√3 = √52√3×√3√3 = √156
(iii) 12+√312+√3
On multiplying the numerator and denominator of the given number by 2−√32-√3, we get:
12+√3 = 12+√3×2−√32−√3 =2−√3(2)2−(√3)2= 2−√34−3=2−√31 = 2−√312+√3 = 12+√3×2-√32-√3 =2-√3(2)2-(√3)2= 2-√34-3=2-√31 = 2-√3
(iv) 1√5−21√5-2
On multiplying the numerator and denominator of the given number by √5+2√5+2, we get:
1√5−2 = 1√5−2×√5+2√5+2 =√5+2(√5)2−(2)2= √5+25−4=√5+21 = √5+21√5-2 = 1√5-2×√5+2√5+2 =√5+2(√5)2-(2)2= √5+25-4=√5+21 = √5+2
(v) 15+3√215+3√2
On multiplying the numerator and denominator of the given number by 5−3√25-3√2, we get:
15+3√2 = 15+3√2×5−3√25−3√2 =5−3√2(5)2−(3√2)2= 5−3√225−18=5−3√27 15+3√2 = 15+3√2×5-3√25-3√2 =5-3√2(5)2-(3√2)2= 5-3√225-18=5-3√27
(vi) 1√7−√61√7-√6
Multiplying the numerator and denominator by √7+√6√7+√6, we get
1√7−√6=1√7−√6×√7+√6√7+√6=√7+√6(√7)2−(√6)21√7-√6=1√7-√6×√7+√6√7+√6=√7+√6(√7)2-(√6)2
=√7+√67−6=√7+√6=√7+√67-6=√7+√6
(vii) 4√11−√74√11-√7
Multiplying the numerator and denominator by √11+√7√11+√7, we get
4√11−√7=4√11−√7×√11+√7√11+√7=4(√11+√7)(√11)2−(√7)24√11-√7=4√11-√7×√11+√7√11+√7=4(√11+√7)(√11)2-(√7)2
=4(√11+√7)11−7=4(√11+√7)4=√11+√7=4(√11+√7)11-7=4(√11+√7)4=√11+√7
(viii) 1+√22−√21+√22-√2
Multiplying the numerator and denominator by 2+√22+√2, we get
1+√22−√2=1+√22−√2×2+√22+√2=2+√2+2√2+2(2)2−(√2)21+√22-√2=1+√22-√2×2+√22+√2=2+√2+2√2+2(2)2-(√2)2
=4+3√24−2=4+3√22=4+3√24-2=4+3√22
(ix) 3−2√23+2√23-2√23+2√2
Multiplying the numerator and denominator by 3−2√23-2√2, we get
3−2√23+2√2=3−2√23+2√2×3−2√23−2√2=(3−2√2)2(3)2−(2√2)23-2√23+2√2=3-2√23+2√2×3-2√23-2√2=(3-2√2)2(3)2-(2√2)2
=9+8-12√29-8 [(a-b)2=a2+b2-2ab]=17-12√2
Question 3:
It being given that √2=1.414, √3=1.732, √5=2.236 and √10=3.162, find the value of three places of decimals, of each of the following.
(i) 2√5
(ii) 2-√3√3
(iii) √10-√5√2
Answer 3:
(i)
2√5=2√5×√5√5=2√55
=2×2.2365=0.894
(ii)
2-√3√3=2-√3√3×√3√3=2√3-33
=2×1.732-33=0.155
(iii)
√10-√5√2=√10-√5√2×√2√2=√2(√10-√5)2
=1.414×(3.162-2.236)2=0.655
Question 4:
Find rational numbers a and b such that
(i) √2-1√2+1=a+b√2
(ii) 2-√52+√5=a√5+b
(iii) √3+√2√3-√2=a+b√6
(iv) 5+2√37+4√3=a+b√3
Answer 4:
(i)
√2-1√2+1=√2-1√2+1×√2-1√2-1=(√2-1)2(√2)2-12
=2+1-2√22-1=3-2√2
∴√2-1√2+1=3+(-2)√2=a+b√2⇒a=3, b=-2
(ii)
2-√52+√5=2-√52+√5×2-√52-√5=(2-√5)2(2)2-(√5)2
=4+5-4√54-5=9-4√5-1=-9+4√5
∴2-√52+√5=4√5+(-9)=a√5+b⇒a=4, b=-9
(iii)
√3+√2√3-√2=√3+√2√3-√2×√3+√2√3+√2=(√3+√2)2(√3)2-(√2)2
=3+2+2×√3×√23-2=5+2√6
∴√3+√2√3-√2=5+2√6=a+b√6⇒a=5, b=2
(iv)
5+2√37+4√3=5+2√37+4√3×7-4√37-4√3=35-20√3+14√3-24(7)2-(4√3)2
=11-6√349-48=11-6√3
∴5+2√37+4√3=11+(-6)√3=a+b√3⇒a=11,b=-6
Question 5:
It being given that √3=1.732, √5=2.236, √6=2.449 and √10=3.162, find to three places of decimal, the value of each of the following.
(i) 1√6+√5
(ii) 6√5+√3
(iii) 14√3-3√5
(iv) 3+√53-√5
(v) 1+2√32-√3
(vi) √5+√2√5-√2
Answer 5:
(i)
1√6+√5=1√6+√5×√6-√5√6-√5=√6-√5(√6)2-(√5)2
=√6-√56-5=√6-√5=2.449-2.236
=0.213
(ii)
6√5+√3=6√5+√3×√5-√3√5-√3=6(√5-√3)(√5)2-(√3)2
=6(√5-√3)5-3=6(√5-√3)2=3(√5-√3)
=3×(2.236-1.732)=1.512
(iii)
14√3-3√5=14√3-3√5×4√3+3√54√3+3√5=4√3+3√5(4√3)2-(3√5)2
=4√3+3√548-45=4×1.732+3×2.2363=4.545
(iv)
3+√53-√5=3+√53-√5×3+√53+√5=(3+√5)2(3)2-(√5)2
=9+5+6√59-5=14+6√54=7+3√52
=7+3×2.2362=6.854
(v)
1+2√32-√3=1+2√32-√3×2+√32+√3=2+√3+4√3+6(2)2-(√3)2
=8+5√34-3=8+5√3=8+5×1.732
=16.660
(vi)
√5+√2√5-√2=√5+√2√5-√2×√5+√2√5+√2=(√5+√2)2(√5)2-(√2)2
=5+2+2×√5×√25-2=7+2√103=7+2×3.1623PAGE NO -44=4.441
Question 6:
Simplify by rationalising the denominator.
(i) 7√3-5√2√48+√187√3-5√2√48+√18
(ii) 2√6-√53√5-2√62√6-√53√5-2√6
Answer 6:
(i)
7√3-5√2√48+√18=7√3-5√2√16×3+√9×2=7√3-5√24√3+3√27√3-5√2√48+√18=7√3-5√2√16×3+√9×2=7√3-5√24√3+3√2
=7√3-5√24√3+3√2×4√3-3√24√3-3√2=7√3×4√3-7√3×3√2-5√2×4√3+5√2×3√2(4√3)2-(3√2)2=84-21√6-20√6+3048-18=7√3-5√24√3+3√2×4√3-3√24√3-3√2=7√3×4√3-7√3×3√2-5√2×4√3+5√2×3√2(4√3)2-(3√2)2=84-21√6-20√6+3048-18
=114-41√630=114-41√630
(ii)
2√6-√53√5-2√6=2√6-√53√5-2√6×3√5+2√63√5+2√6=2√6×3√5+2√6×2√6-√5×3√5-√5×2√6(3√5)2-(2√6)22√6-√53√5-2√6=2√6-√53√5-2√6×3√5+2√63√5+2√6=2√6×3√5+2√6×2√6-√5×3√5-√5×2√6(3√5)2-(2√6)2
=6√30+24-15-2√3045-24=9+4√3021=6√30+24-15-2√3045-24=9+4√3021
Question 7:
Simplify
(i) 4+√54-√5+4-√54+√54+√54-√5+4-√54+√5
(ii) 1√3+√2-2√5-√3-3√2-√51√3+√2-2√5-√3-3√2-√5
(iii) 2+√32-√3+2-√32+√3+√3-1√3+12+√32-√3+2-√32+√3+√3-1√3+1
(iv) 2√6√2+√3+6√2√6+√3-8√3√6+√22√6√2+√3+6√2√6+√3-8√3√6+√2
Answer 7:
(i)
4+√54-√5+4-√54+√5=4+√54-√5×4+√54+√5+4-√54+√5×4-√54-√5=(4+√5)2(4)2-(√5)2+(4-√5)2(4)2-(√5)24+√54-√5+4-√54+√5=4+√54-√5×4+√54+√5+4-√54+√5×4-√54-√5=(4+√5)2(4)2-(√5)2+(4-√5)2(4)2-(√5)2
=16+5+8√5+16+5-8√516-5=4211=16+5+8√5+16+5-8√516-5=4211
(ii)
1√3+√2-2√5-√3-3√2-√5=1√3+√2×√3-√2√3-√2-2√5-√3×√5+√3√5+√3-3√2-√5×√2+√5√2+√5=√3-√2(√3)2-(√2)2-2(√5+√3)(√5)2-(√3)2-3(√2+√5)(√2)2-(√5)21√3+√2-2√5-√3-3√2-√5=1√3+√2×√3-√2√3-√2-2√5-√3×√5+√3√5+√3-3√2-√5×√2+√5√2+√5=√3-√2(√3)2-(√2)2-2(√5+√3)(√5)2-(√3)2-3(√2+√5)(√2)2-(√5)2
=√3-√23-2-2(√5+√3)5-3-3(√2+√5)2-5=√3-√2-2(√5+√3)2-3(√2+√5)(-3)=√3-√2-√5-√3+√2+√5=√3-√23-2-2(√5+√3)5-3-3(√2+√5)2-5=√3-√2-2(√5+√3)2-3(√2+√5)(-3)=√3-√2-√5-√3+√2+√5
=0=0
(iii)
2+√32-√3+2-√32+√3+√3-1√3+1=2+√32-√3×2+√32+√3+2-√32+√3×2-√32-√3+√3-1√3+1×√3-1√3-1=(2+√3)2(2)2-(√3)2+(2-√3)2(2)2-(√3)2+(√3-1)2(√3)2-122+√32-√3+2-√32+√3+√3-1√3+1=2+√32-√3×2+√32+√3+2-√32+√3×2-√32-√3+√3-1√3+1×√3-1√3-1=(2+√3)2(2)2-(√3)2+(2-√3)2(2)2-(√3)2+(√3-1)2(√3)2-12
=4+3+4√34-3+4+3-4√34-3+3+1-2√33-1=7+4√3+7-4√3+4-2√32=14+2-√3=4+3+4√34-3+4+3-4√34-3+3+1-2√33-1=7+4√3+7-4√3+4-2√32=14+2-√3
=16-√3=16-√3
(iv)
2√6√2+√3+6√2√6+√3-8√3√6+√2=2√6√3+√2×√3-√2√3-√2+6√2√6+√3×√6-√3√6-√3-8√3√6+√2×√6-√2√6-√2=2√6×√3-2√6×√2(√3)2-(√2)2+6√2×√6-6√2×√3(√6)2-(√3)2-8√3×√6-8√3×√2(√6)2-(√2)22√6√2+√3+6√2√6+√3-8√3√6+√2=2√6√3+√2×√3-√2√3-√2+6√2√6+√3×√6-√3√6-√3-8√3√6+√2×√6-√2√6-√2=2√6×√3-2√6×√2(√3)2-(√2)2+6√2×√6-6√2×√3(√6)2-(√3)2-8√3×√6-8√3×√2(√6)2-(√2)2
=2√18-2√123-2+6√12-6√66-3-8√18-8√66-2=2√18-2√12+6√12-6√63-8√18-8√64=2√18-2√12+2√12-2√6-2√18+2√6=2√18-2√123-2+6√12-6√66-3-8√18-8√66-2=2√18-2√12+6√12-6√63-8√18-8√64=2√18-2√12+2√12-2√6-2√18+2√6
=0=0
Question 8:
Prove that
(i) 13+√7+1√7+√5+1√5+√3+1√3+1=113+√7+1√7+√5+1√5+√3+1√3+1=1
(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=211+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Answer 8:
(i)
13+√7+1√7+√5+1√5+√3+1√3+1=13+√7×3-√73-√7+1√7+√5×√7-√5√7-√5+1√5+√3×√5-√3√5-√3+1√3+1×√3-1√3-1=3-√7(3)2-(√7)2+√7-√5(√7)2-(√5)2+√5-√3(√5)2-(√3)2+√3-1(√3)2-1213+√7+1√7+√5+1√5+√3+1√3+1=13+√7×3-√73-√7+1√7+√5×√7-√5√7-√5+1√5+√3×√5-√3√5-√3+1√3+1×√3-1√3-1=3-√7(3)2-(√7)2+√7-√5(√7)2-(√5)2+√5-√3(√5)2-(√3)2+√3-1(√3)2-12
=3-√79-7+√7-√57-5+√5-√35-3+√3-13-1=3-√72+√7-√52+√5-√32+√3-12=3-√7+√7-√5+√5-√3+√3-12=3-√79-7+√7-√57-5+√5-√35-3+√3-13-1=3-√72+√7-√52+√5-√32+√3-12=3-√7+√7-√5+√5-√3+√3-12
=22=1=22=1
(ii)
11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=11+√2×1-√21-√2+1√2+√3×√2-√3√2-√3+1√3+√4×√3-√4√3-√4+1√4+√5×√4-√5√4-√5+1√5+√6×√5-√6√5-√6+1√6+√7×√6-√7√6-√7+1√7+√8×√7-√8√7-√8+1√8+√9×√8-√9√8-√911+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=11+√2×1-√21-√2+1√2+√3×√2-√3√2-√3+1√3+√4×√3-√4√3-√4+1√4+√5×√4-√5√4-√5+1√5+√6×√5-√6√5-√6+1√6+√7×√6-√7√6-√7+1√7+√8×√7-√8√7-√8+1√8+√9×√8-√9√8-√9
=1-√212-(√2)2+√2-√3(√2)2-(√3)2+√3-√4(√3)2-(√4)2+√4-√5(√4)2-(√5)2+√5-√6(√5)2-(√6)2+√6-√7(√6)2-(√7)2+√7-√8(√7)2-(√8)2+√8-√9(√8)2-(√9)2=1-√21-2+√2-√32-3+√3-√43-4+√4-√54-5+√5-√65-6+√6-√76-7+√7-√87-8+√8-√98-9=1-√2(-1)+√2-√3(-1)+√3-√4(-1)+√4-√5(-1)+√5-√6(-1)+√6-√7(-1)+√7-√8(-1)+√8-√9(-1)=1-√212-(√2)2+√2-√3(√2)2-(√3)2+√3-√4(√3)2-(√4)2+√4-√5(√4)2-(√5)2+√5-√6(√5)2-(√6)2+√6-√7(√6)2-(√7)2+√7-√8(√7)2-(√8)2+√8-√9(√8)2-(√9)2=1-√21-2+√2-√32-3+√3-√43-4+√4-√54-5+√5-√65-6+√6-√76-7+√7-√87-8+√8-√98-9=1-√2(-1)+√2-√3(-1)+√3-√4(-1)+√4-√5(-1)+√5-√6(-1)+√6-√7(-1)+√7-√8(-1)+√8-√9(-1)
=√2-1+√3-√2+√4-√3+√5-√4+√6-√5+√7-√6+√8-√7+√9-√8=3-1=2=√2-1+√3-√2+√4-√3+√5-√4+√6-√5+√7-√6+√8-√7+√9-√8=3-1=2
Question 9:
Find the values of a and b if
7+3√53+√5-7-3√53-√5=a+b√5
Answer 9:
7+3√53+√5-7-3√53-√5=7+3√53+√5×3-√53-√5-7-3√53-√5×3+√53+√5=7(3-√5)+3√5(3-√5)32-(√5)2-7(3+√5)-3√5(3+√5)32-(√5)27+3√53+√5−7−3√53−√5=7+3√53+√5×3−√53−√5−7−3√53−√5×3+√53+√5=7(3−√5)+3√5(3−√5)32−(√5)2−7(3+√5)−3√5(3+√5)32−(√5)27+3√53+√5-7-3√53-√5=7+3√53+√5×3-√53-√5-7-3√53-√5×3+√53+√5=7(3-√5)+3√5(3-√5)32-(√5)2-7(3+√5)-3√5(3+√5)32-(√5)2
=21-7√5+9√5-159-5-21+7√5-9√5-159-5=6+2√54-6-2√54=21−7√5+9√5−159−5−21+7√5−9√5−159−5=6+2√54−6−2√54=21-7√5+9√5-159-5-21+7√5-9√5-159-5=6+2√54-6-2√54
=6+2√5-6+2√54=4√54=√5=6+2√5−6+2√54=4√54=√5=6+2√5-6+2√54=4√54=√5
∴7+3√53+√5-7-3√53-√5=0+1×√5∴7+3√53+√5−7−3√53−√5=0+1×√5∴7+3√53+√5-7-3√53-√5=0+1×√5
Comparing with the given expression, we get
a = 0 and b = 1
Thus, the values of a and b are 0 and 1, respectively.
Question 10:
Simplify √13-√11√13+√11+√13+√11√13-√11.
Answer 10:
√13-√11√13+√11+√13+√11√13-√11=√13-√11√13+√11×√13-√11√13-√11+√13+√11√13-√11×√13+√11√13+√11=(√13-√11)2(√13)2-(√11)2+(√13+√11)2(√13)2-(√11)2
=13+11-2×√13×√1113-11+13+11+2×√13×√1113-11=24-2√1432+24+2√1432=24-2√143+24+2√1432
=482=24
Question 11:
If x=3+2√2, check whether x+1x is rational or irrational.
Answer 11:
x=3+2√2 .....(1)
⇒1x=13+2√2⇒1x=13+2√2×3-2√23-2√2⇒1x=3-2√232-(2√2)2
⇒1x=3-2√29-8⇒1x=3-2√2 .....(2)
Adding (1) and (2), we get
, which is a rational number
Thus, is rational.
Question 12:
If , find value of .
Answer 12:
Subtracting (2) from (1), we get
Thus, the value of is .
Question 13:
If , find the value of .
Answer 13:
Adding (1) and (2), we get
Squaring on both sides, we get
Thus, the value of is 322.
Question 14:
If , find the value of .
Answer 14:
Adding (1) and (2), we get
Thus, the value of is 5.
Question 15:
If , find the value of .
Answer 15:
Subtracting (2) from (1), we get
Thus, the value of is .
PAGE NO-45
Question 16:
If x=√13+2√3, find the value of x−1x.
Answer 16:
x=√13+2√3 .....(1)⇒1x=1√13+2√3⇒1x=1√13+2√3×√13−2√3√13−2√3
⇒1x=√13−2√3(√13)2−(2√3)2⇒1x=√13−2√313−12⇒1x=√13−2√3 .....(2)
Subtracting (2) from (1), we get
x−1x=(√13+2√3) −(√13−2√3 )⇒x−1x=√13+2√3 −√13+2√3⇒x−1x=4√3
Thus, the value of is .
Question 17:
If , find the value of .
Answer 17:
Adding (1) and (2), we get
Cubing both sides, we get
[Using (3)]
Thus, the value of is 52.
Question 18:
If , show that .
Answer 18:
Disclaimer: The question is incorrect.
The question is incorrect. Kindly check the question.
The question should have been to show that .
Question 19:
If , show that .
Answer 19:
According to question,
Now,
Hence, .
Question 20:
If , find the value of a2 + b2 – 5ab.
Answer 20:
According to question,
Now,
Hence, the value of a2 + b2 – 5ab is 93.
Question 21:
If , find the value of p2 + q2.
Answer 21:
According to question,
Now,
Hence, the value of p2 + q2 is 47.
Question 22:
Rationalise the denominator of each of the following.
(i) (ii) (iii)
Answer 22:
Hence, the rationalised form is .
Hence, the rationalised form is .
Hence, the rationalised form is .
Question 23:
Given, , find the value of correct to 3 places of decimal.
Answer 23:
Hence, the value of correct to 3 places of decimal is −1.465.
Question 24:
If , find the value of x3 – 2x2 – 7x + 5.
Answer 24:
Now,
Hence, the value of x3 – 2x2 – 7x + 5 is 3.
Question 25:
Evaluate , it being given that .
Hint
Answer 25:
Hence, = 5.398 .
No comments:
Post a Comment