Exercise 1D
Question 1:
Add:
(i) (2√3-5√2)and(√3+2√2)(2√3-5√2)and(√3+2√2)
(ii) (2√2+5√3-7√5)and(3√3-√2+√5)(2√2+5√3-7√5)and(3√3-√2+√5)
(iii) (23√7-12+6√11)and(13√7+32√2-√11)(23√7-12+6√11)and(13√7+32√2-√11)
Answer 1:
(i) 2√3-5√2+√3+2√2=(2√3+√3)+(2√2-5√2)=3√3-3√2(ii) 2√2+5√3-7√5+3√3-√2+√5=2√2-√2+5√3+3√3+√5-7√5=√2+8√3-6√5(iii) 23√7-12√2+6√11+13√7+32√2-√11=23√7+13√7-√11+6√11+32√2-12√2=√7+5√11+√2(i) 2√3-5√2+√3+2√2=(2√3+√3)+(2√2-5√2)=3√3-3√2(ii) 2√2+5√3-7√5+3√3-√2+√5=2√2-√2+5√3+3√3+√5-7√5=√2+8√3-6√5(iii) 23√7-12√2+6√11+13√7+32√2-√11=23√7+13√7-√11+6√11+32√2-12√2=√7+5√11+√2
PAGE 28
Question 2:
Multiply:
(i) 3√5 by 2√53√5 by 2√5
(ii) 6√15 by 4√36√15 by 4√3
(iii) 2√6 by 3√32√6 by 3√3
(iv) 3√8 by 3√23√8 by 3√2
(v) √10 by √40√10 by √40
(vi) 3√28 by 2√73√28 by 2√7
Answer 2:
(i) 3√5×2√5=3×2×√5×√5=6×5=30(ii) 6√15×4√3=6×4×√5×√3×√3=24×3×√5=72√5(iii) 2√6×3√3=2×3×√2×√3×√3=6×3×√2=18√2(iv) 3√8×3√2=3×3×√2×√2×√2×√2=9×4=36 (v) √10×√40=√2×√5×√2×√2×√2×√5=√2×√2×√2×√2×√5×√5=2×2×5=20(vi) 3√28×2√7=6√7×4×√7=6×7×√4=42×2=84(i) 3√5×2√5=3×2×√5×√5=6×5=30(ii) 6√15×4√3=6×4×√5×√3×√3=24×3×√5=72√5(iii) 2√6×3√3=2×3×√2×√3×√3=6×3×√2=18√2(iv) 3√8×3√2=3×3×√2×√2×√2×√2=9×4=36 (v) √10×√40=√2×√5×√2×√2×√2×√5=√2×√2×√2×√2×√5×√5=2×2×5=20(vi) 3√28×2√7=6√7×4×√7=6×7×√4=42×2=84
Question 3:
Divide:
(i) 16√6 by 4√216√6 by 4√2
(ii) 12√5 by 4√312√5 by 4√3
(iii) 18√21 by 6√718√21 by 6√7
Answer 3:
(i) 16√64√2=16√2√34√2=4√3(ii) 12√154√3=12√5×√34√3=3√5(iii) 18√216√7=18√7√36√7=3√3(i) 16√64√2=16√2√34√2=4√3(ii) 12√154√3=12√5×√34√3=3√5(iii) 18√216√7=18√7√36√7=3√3
Question 4:
Simplify
(i) (3−√11) (3+√11)(3-√11) (3+√11)
(ii) (−3+√5) (−3−√5)(-3+√5) (-3-√5)
(iii) (3−√3)2(3-√3)2
(iv) (√5−√3)2(√5-√3)2
(v) (5+√7) (2+√5)(5+√7) (2+√5)
(vi) (√5−√2) (√2−√3)(√5-√2) (√2-√3)
Answer 4:
(i) (3−√11) (3+√11)(3-√11) (3+√11)
=32−(√11)2 [(a−b)(a+b)=a2−b2]=9−11=−2=32-(√11)2 [(a-b)(a+b)=a2-b2]=9-11=-2
(ii) (−3+√5) (−3−√5)(-3+√5) (-3-√5)
=(−3)2−(√5)2 [(a+b)(a−b)=a2−b2]=9−5=4=(-3)2-(√5)2 [(a+b)(a-b)=a2-b2]=9-5=4
(iii) (3−√3)2(3-√3)2
=32+(√3)2−2×3×√3 [(a−b)2=a2+b2−2ab]=9+3−6√3=12−6√3=32+(√3)2-2×3×√3 [(a-b)2=a2+b2-2ab]=9+3-6√3=12-6√3
(iv) (√5−√3)2(√5-√3)2
=(√5)2+(√3)2−2×√5√3 [(a−b)2=a2+b2−2ab]=5+3−2√15=8−2√15=(√5)2+(√3)2-2×√5√3 [(a-b)2=a2+b2-2ab]=5+3-2√15=8-2√15
=√5×√2−√5×√3−√2×√2+√2×√3 =√10−√15−2+√6=√5×√2-√5×√3-√2×√2+√2×√3 =√10-√15-2+√6
(v) (5+√7) (2+√5)(5+√7) (2+√5)
(5+√7)(2+√5)=5×2+5×√5+√7×2+√7×√5=10+5√5+2√7+√35(5+√7)(2+√5)=5×2+5×√5+√7×2+√7×√5=10+5√5+2√7+√35
(vi) (√5−√2) (√2−√3)(√5-√2) (√2-√3)
(√5−√2)(√2−√3)=√5×√2−√5×√3−√2×√2+√2×√3 =√10−√15−2+√6(√5-√2)(√2-√3)=√5×√2-√5×√3-√2×√2+√2×√3 =√10-√15-2+√6
Question 5:
Simplify (3+√3) (2+√2)2.
Answer 5:
(3+√3) (2+√2)2=(3+√3) [22+(√2)2+2×2√2]=(3+√3) [4+2+4√2]=(3+√3) [6+4√2]
=3×6+3×4√2+√3×6+√3×4√2=18+12√2+6√3+4√6
Question 6:
Examine whether the following numbers are rational or irrational:
(i) (5-√5) (5+√5)
(ii) (√3+2)2
(iii) 2√133√52-4√117
(iv) √8+4√32-6√2
Answer 6:
(i) (5-√5) (5+√5)
=52-(√5)2 [(a-b)(a+b)=a2-b2]=25-5=20, which is an integer
Hence, (5-√5) (5+√5) is rational.
(ii) (√3+2)2
=(√3)2+22+2×√3×2 [(a+b)2=a2+b2+2ab]=3+4+4√3=7+4√3
Since, the sum and product of rational numbers and an irrational number is always an irrational.
⇒7+4√3 is irrational.
Hence, (√3+2)2 is irrational.
(iii) 2√133√52-4√117
=2√133√13×4-4√13×9=2√13√13(3√4-4√9)=2(3×2-4×2)
=26-8=2-2=-1, which is an integer
Hence, 2√133√52-4√117 is rational.
(iv) √8+4√32-6√2
=2√2+4×4√2-6√2=2√2+16√2-6√2=12√2
Since, the product of a rational number and an irrational number is always an irrational.
Hence, √8+4√32-6√2 is rational.
Question 7:
On her birthday Reema distributed chocolates in an orphanage. The total number of chocolates she distributed is given by (5+√11) (5-√11).
(i) Find the number of chocolates distributed by her.
(ii) Write the moral values depicted here by Reema.
Answer 7:
(i) As, (5+√11) (5-√11)
=52-(√11)2 [(a+b)(a-b)=a2-b2]=25-11=14
Hence, the number of chocolates distributed by Reema is 14.
(ii) The moral values depicted here by Reema is helpfulness and caring.
Disclaimer: The moral values may vary from person to person.
Question 8:
Simplify
(i) 3√45-√125+√200-√50
(ii) 2√30√6-3√140√28+√55√99
(iii) √72+√800-√18
Answer 8:
(i) 3√45-√125+√200-√50
=3√9×5-√25×5+√100×2-√25×2=3×3√5-5√5+10√2-5√2=9√5-5√5+5√2=4√5+5√2
(ii) 2√30√6-3√140√28+√55√99
=2√6×5√6-3√28×5√28+√5×11√9×11=2√6×√5√6-3√28×√5√28+√5×√11√9×√11=2√5-3√5+√53
=-√5+√53=-3√5+√53=-2√53
(iii) √72+√800-√18
=√36×2+√400×2-√9×2=6√2+20√2-3√2=23√2
No comments:
Post a Comment