TEST
Question 1
Sol:
In the given △ABC
AD=DB and BE=EC
So D and E are mid point of AB and BC respectively
So DE‖AC and DE=12AC
(a) DE is mid segment of △ABC
(b) DE is parallel to AC
(C) AD=BD
(d) DE is half of AC
(e) Twice of EC=BC
Question 2
Sol: In the given figure,
If YL=LX,YM=MZ and XN=NZ
So L,M and N are the mid points of side XY, YZ
and XZ respectively
So LM=12×2,MN=12xy
XY =10cm LM =6cm, ∠mNZ=25∘
(a) Nm=12×y=12×10 cm=5 cm
(b)xz=2×Lm=2×6=12 cm
(c) NZ=12××2=12×12=6 cm
(d) ∠LMN=25∘
(If LM||XZ an MN is a transversal)
(e) ∠Y×z=∠mNz=25∘
(f)∠XLM=∠XNM (opposite angle of a ||gm)
=180∘−25∘=155∘
Question 3
(IMAGE TO BE ADDED)
SOL: In △ABC
Lm‖AC AND ∠m=12AC
⇒32=12×4n⇒2n=32
⇒n=322=16 cm
So n=16 cm
Question 4
(IMAGE TO BE ADDED)
Sol: AE =EC and BD =DC
So DE‖AB and DE=12AB
⇒6n=4n+12
⇒6n−4n=+12
⇒2n=12
n=122=6
Question 5
Sol: In the given figure
CG,EH and FJ are mid segment of △ABD,△GCD and △GHE Respectively
AB=33 cm,∠ABC=57∘
(a)
CG=12AB=12×33=16.5 cm
(b)
EH=12DC=12×12DB=14DB=14×44=11 cm
(C)
FJ=12GH=12×12GC=14GC=14×16.5 cm=4.125 cm
(d) M∠DCG=∠DBA
=57∘
(e) M∠GHE=∠GCD=37∘
(f)
M∠FJH=180∘−∠GHE=180∘−57∘=123∘
No comments:
Post a Comment