TEST
Question 1
The value of $\log_2 16$ is
(a) $\frac{1}{8}$
(b) 4
(c) 8
(d) 16
Sol :
(b) 4
$\log_2 16 = \log_2 2^4 = 4\log_2 2$ = 4×1 (∵ $log_2 a = 1$)
= 4
Question 2
If $a^x = b^y$ then
(a) $\log \frac{a}{b}=\frac{x}{y}$
(b) $\frac{\log a}{ \log b}=\frac{x}{y}$
(c) $\frac{\log a}{\log b}=\frac{y}{x}$
(d) None of these
Sol :
$a^x = b^y$
Taking log both sides,
$log_a x = b_by $
⇒ $x\log_a = y\log_b$
⇒ $\frac{\log a}{\log b}=\frac{y}{x}$
Question 3
If log 3 = 0.477 and $(1000)^x = 3$, then x equals
(a) 0.0159
(b) 0.0477
(c) 0.159
(d) 10
Sol :
log 3 = 0.477
$(1000)^x = 3$
Taking log of both sides
xlog 1000 = log3
⇒ x × 3 = log3 (∵ log 1000 = 3)
⇒ 3x = 0.477
⇒ $x = \frac{0.477}{3}$
x = 0.159
Question 4
If $\log_{10}2 = 0.3010$, the value of log105 is
(a) 0.3241
(b) 0.6911
(c) 0.6990
(d) 0.7525
Sol :
$\log_{10} 2 = 0.3010$
$\log_{10} 5 = \log_{10} \left(\frac{10}{2}\right) = \log_{10} 10 – \log_{10} 2$
= 1 – 0.3010 = 0.6990 (c)
Question 5
If $\log_{10} 2 = 0.3010$, the value of $\log_{10} 80$ is
(a) 1.6020
(b) 1.9030
(c) 3.9030
(d) None of these
Sol :
(b) 1.9030
$\log_{10} 2 = 0.3010$
$\log_{10} 80 =\log_{10} 10 \times 2^3$
$= \log_{10} 10 + \log_{10} 2^3$
$= \log_{10} 10 + 3\log_{10} 2$
= 1 + 3×0.3010
= 1 + 0.9030 = 1.9030
Question 6
If $\log_{10} 7 = a$, then $\log_{10} \left(\frac{1}{70}\right)$ is equal to
(a) – (1 + a)
(b) $(1 + a)^{-1}$
(c) $\frac{a}{10}$
(d) $\frac{1}{10a}$
Sol :
(a) – (1 + a)
$\log_{10} 7 = a$
$\log_{10} \left(\frac{1}{70}\right) = \log_{10} 1 – \log_{10} 70$
$= 0 – \log_{10} (7 \times 10)$
$= 0 – \log_{10} 7 – \log_{10} 10$
= 0 – 0 – 1 = – (1 + a)
Question 7
If log 27 = 1.431, then the value of log 9 is
(a) 0.934
(b) 0.945
(c) 0.954
(d) 0.958
Sol :
(c) 0.954
log 27 = 1.431
⇒ log 3³ = 1.431
⇒ 31og 3 = 1.431
⇒ log 3 $= \frac{1.431}{3}$ = 0.477
log 9 = log 3² = 2 log 2
= 2×0.477 = 0.954
Question 8
If $\log_{10} 5 + \log_{10}(5x + 1) = \log_{10}(x + 5) + 1$, then x is equal to
(a) 1
(b) 3
(c) 5
(d) 10
Sol :
(b) 3
$\log_{10} 5 + \log_{10}(5x + 1) = log_{10}(x + 5) + 1$
$\log_{10}5 (5x + 1) = \log_{10} (x + 5) + \log_{10} 10$
$\log_{10}(5x + 1) = \log_{10} 10 (x + 5)$
Comparing, we get
⇒ 5(5x + 1) = 10(x + 5)
⇒ 25x + 5 = 10x + 50
⇒ 25x – 10x = 50 – 5
⇒ 15x = 45
⇒ $x = \frac{45}{15} = 3$
⇒ x = 3
Question 9
If $\log_x 4 = 0.4$, then the value of x is
(a) 1
(b) 4
(c) 16
(d) 32
Sol :
$\log_x 4 = 0.4$
⇒ $4 = x^{0.4}$
⇒ $x = 4^{1}{0.4}=(2^2)^{\frac{1}{0.4}}$
= $2^{2×\frac{1}{0.4}}=2^{\frac{1}{0.2}}$
= $2^{\frac{1}{5}}=2^{1×\frac{5}{1}}=2^5$
= 2×2×2×2×2 = 32
∴ x = 32
Question 10
The solution of $\log_π [\log_2 (\log_7 x)] = 0 $ is
(a) 2
(b) π²
(c) 72
(d) None of these
Sol :
$\log_π [\log_2 (\log_7 x)] = 0$
⇒ $\log_2 (log_7 x) = π° = 1$
⇒ $\log_7 x = 2^1 = 2$
⇒ $x = 7^2$
∴ $x = 7^2$
No comments:
Post a Comment