Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

SChand CLASS 9 Chapter 7 Logarithms Exercise 7(C)

  Exercise 7 C


Question 1

If log2=0.3010,log3=0.4771,log5=0.6990,log7=0.8451 and log11=1.0414, find the following:

(1) log6

(2) log12

(3) log15

(4) log200

(5) log36

(6) log80

(7) log2 and 1/3

(8) log113

(9) log(2 and 1/3)5

Solution:

1) log6

=log(3×2)

=log3+log2

=0.477+0.3010

=0.7781

(2) 

log12=log(3x4)

=log3+log4

=log3+2log2

=0.4771+2(0.3010)

=0.4771+0.6020

=1.0791

6) log80

=log(8×10)

=log8+log10

=log23+log10

=3log2+9

=3(0.3010)+1

=0.9030+1

=1.9030

7) log21/3

=log7/3=log7log3

=0.8451-0.477

=0.3680

8) log113

=3log11=3(1.0414)=3.1242

9)log(2/3)5

=5log7/3

=5(log7log3)

=5(0.845)0.4771

=5(0.3680)

=1.8400

Question 10

I f log6=0.7782, find the value of log36.

Sol:log6=0.7782

log 36=log 62

=2(0.7782)

=1.5564


Question 11

Given log1025=x,log1075=y, evaluate without using logarithmic tables, in terms x , y

(i) log103

Sol: log1075=y

log10(3×25)=y

log103=yx

(ii) log1025

log1052=x

log105=x/2

log1075=y

log10(52×3)=y

log1052+log103=y

log103=y2log105

=y2×x/2

=y-x


Question 12

Given log31.87=x, write down in terms of x :

(i) log(31.87)2

Sol:=2log(31.87)

=2x


(ii) log100.03187

Sol:=log10(3187100000)

=log10(31.871000)

=log10(31.871)log10103

=x3


(iii) log1031870

Sol: =log10(31870)1/2

=12log10(31870)

=12log10(318701000×1000)

=12log10(31.87×1000)

=1/2{log10(31.87)+log10(1000)}

=12{x+log10103}

=12(x+3)=(x+3)2


Question 13

(i) log10(x+1)+log10(x1)=log1011+2log103

Sol: log10{(x+1)×(x1)}=log1011+log103

log10(x21)=log10(11×9)

x21=99

x2=100

x=±10

(ii) log(10x+5)log(x4)=2

=ar log10x+5x4=2

=10x+5=102(x4)

10x+5=100x400

90x=405

x=40590=4.5


Question 14

(i) 2log10x+12log10y=1

12log10y=1log10x2log10y1/2=log101010log10x2=log10(10/x2)

=log10(10/x2)

y1/2=10x2=

y=100x4=100x4

(ii) 2log31/2log16+log12

=log9log4+log12

=2log32/log2+log3+2log2

=3log3


Question 15

log10y+2log10x=2

log10y=22log10x

=2log10x2

=log10102log10x2

=log10(100x2)

y=100x2

y=100x2


Question 17

2+12log1092log105

=2+12log1032=-2log105

=2+log103-2log105

=2+log103log1025

=2+log10(3/25)

=log10102+log10(32/25)

=log10(100×3/25)

=log102


Question 18

(i) a=log12,b=log 6 C=2logr2

=abc

=log12log62log21/2

=log(3×4)log(3×2)log2

=log3+log4log3log2log2

=log 2log2 - 2log2

=0

(ii)9abc

=90=1


Question 19

(i) xyz

=log1012log42×log109log10(0.4)

=log1012log22log2×2log103log10(410)

=log103+log104log103(log104log1010)

=log103+2log102log1032log102+1

=1

(ii)6xyz

=61=6

Question 20

P=log1020,q=log1025

=2log10202log105

log10(x+1)= log1020=log105

=log10(205)

x+1=4x=3

Question 21

3+log10 (102)

=32log1010

=32=1

Question 22

log10x=a10a=x10b=y

(i) 10a1=10a.10-1

=10a10=x10

(ii)102b

=10(10b)2

=(y)2

(iii) log10P=2ab

=2log10xlog10y

=log10x2-log10y

=log10(x2/y)

P=x2/y

Question 23

2log105+log10812log104

=log1052+log108log1022×1/2

=log1025+log108log102

=$\log _{10}(25 x 8\2)

=log10102=2

Question 24

(i) log1060

=log10(2×3×10)

=log102+log103+log1010

=1+x+y

Question 25

(i)2log10x+1=log10250

log10x2+1=log10250

log10x2=log10250log1010

=log10(25010)=log10(25)

x2=25

x=±5

(ii)log102x

=log10(2×5)(We take only positive value )

=log1010

=1

Question 26

(i)log1010xy2

=log1010×10m+n1(10mn)2

=log1010m+n+1102m2n 

=log1010m+n+12m+2n

=log10103nm+1

=(3nm+1)

logx=m+n

x=10m+n

logy=mny=10mn

(ii)log10x=2

x=102


Question 27

If log (p+q3)=12=(log p + log q) prove that p² + q² = 7pq.

Sol :

log(p+q3) =12(logp+logq)

=12log(pq)

=logpq

p+q3 =pq

(p+q)2=9pq

p2+2pq+q2=9pq

p2+q2=7pq


Question 28

If x2+y2=51xy, prove that log 12=12(log x + log y).

Sol : 

x2+y2=51xy

(x-y)^{2}+2 x y=51 x y – 2xy

(Subtracting 2xy)

⇒ (x – y)² = 49xy

\frac{(x-y)^2}{49}=xy

\frac{(x-y)^2}{49}=xy

\left(\frac{x-y}{7}\right)^2=xy


No comments:

Post a Comment

Contact Form

Name

Email *

Message *