Exercise 7 C
If log2=0.3010,log3=0.4771,log5=0.6990,log7=0.8451 and log11=1.0414, find the following:
(1) log6
(2) log12
(3) log15
(4) log200
(5) log36
(6) log80
(7) log2 and 1/3
(8) log113
(9) log(2 and 1/3)5
Solution:
1) log6
=log(3×2)
=log3+log2
=0.477+0.3010
=0.7781
(2)
log12=log(3x4)
=log3+log4
=log3+2log2
=0.4771+2(0.3010)
=0.4771+0.6020
=1.0791
6) log80
=log(8×10)
=log8+log10
=log23+log10
=3log2+9
=3(0.3010)+1
=0.9030+1
=1.9030
7) log21/3
=log7/3=log7−log3
=0.8451-0.477
=0.3680
8) log113
=3log11=3(1.0414)=3.1242
9)log(2/3)5
=5log7/3
=5(log7−log3)
=5(0.845)−0.4771
=5(0.3680)
=1.8400
Question 10
I f log6=0.7782, find the value of log36.
Sol:log6=0.7782
log 36=log 62
=2(0.7782)
=1.5564
Question 11
Given log1025=x,log1075=y, evaluate without using logarithmic tables, in terms x , y
(i) log103
Sol: log1075=y
log10(3×25)=y
log103=y−x
(ii) log1025
log1052=x
log105=x/2
log1075=y
log10(52×3)=y
log1052+log103=y
log103=y−2log105
=y−2×x/2
=y-x
Question 12
Given log31.87=x, write down in terms of x :
(i) log(31.87)2
Sol:=2log(31.87)
=2x
(ii) log100.03187
Sol:=log10(3187100000)
=log10(31.871000)
=log10(31.871)−log10103
=x−3
(iii) log10√31870
Sol: =log10(31870)1/2
=12log10(31870)
=12log10(318701000×1000)
=12log10(31.87×1000)
=1/2{log10(31.87)+log10(1000)}
=12{x+log10103}
=12(x+3)=(x+3)2
Question 13
(i) log10(x+1)+log10(x−1)=log1011+2log103
Sol: log10{(x+1)×(x−1)}=log1011+log103
log10(x2−1)=log10(11×9)
x2−1=99
x2=100
x=±10
(ii) log(10x+5)−log(x−4)=2
=ar log10x+5x−4=2
=10x+5=102(x−4)
10x+5=100x−400
90x=405
x=40590=4.5
Question 14
(i) 2log10x+12log10y=1
12log10y=1−log10x2log10y1/2=log101010−log10x2=log10(10/x2)
=log10(10/x2)
∴y1/2=10x2=
y=100x4=100x−4
(ii) 2log3−1/2log16+log12
=log9−log4+log12
=2log3−2/log2+log3+2log2
=3log3
Question 15
log10y+2log10x=2
log10y=2−2log10x
=2−log10x2
=log10102−log10x2
=log10(100x2)
y=100x2
y=100x−2
Question 17
2+12log109−2log105
=2+12log1032=-2log105
=2+log103-2log105
=2+log103−log1025
=2+log10(3/25)
=log10102+log10(32/25)
=log10(100×3/25)
=log102
Question 18
(i) a=log12,b=log 6 C=2logr2
=a−b−c
=−log12−log6−2log21/2
=log(3×4)−log(3×2)−log2
=log3+log4−log3−log2−log2
=log 2log2 - 2log2
=0
(ii)9a−b−c
=90=1
Question 19
(i) x−y−z
=log1012−log42×log109−log10(0.4)
=log1012−log22log2×2log103−log10(410)
=log103+log104−log103−(log104−log1010)
=log103+2log102−log103−2log102+1
=1
(ii)6x−y−z
=61=6
Question 20
P=log1020,q=log1025
=2log1020- 2log105
log10(x+1)= log1020=log105
=log10(205)
∴x+1=4x=3
Question 21
3+log10 (10−2)
=3−2log1010
=3−2=1
Question 22
log10x=a10a=x10b=y
(i) 10a−1=10a.10-1
=10a10=x10
(ii)102b
=10(10b)2
=(y)2
(iii) log10P=2a−b
=2log10x−log10y
=log10x2-log10y
=log10(x2/y)
P=x2/y
Question 23
2log105+log108−12log104
=log1052+log108−log1022×1/2
=log1025+log108−log102
=$\log _{10}(25 x 8\2)
=log10102=2
Question 24
(i) log1060
=log10(2×3×10)
=log102+log103+log1010
=1+x+y
Question 25
(i)2log10x+1=log10250
log10x2+1=log10250
log10x2=log10250−log1010
=log10(25010)=log10(25)
∴x2=25
x=±5
(ii)log102x
=log10(2×5)(We take only positive value )
=log1010
=1
Question 26
(i)log1010xy2
=log1010×10m+n1(10m−n)2
=log1010m+n+1102m−2n
=log1010m+n+1−2m+2n
=log10103n−m+1
=(3n−m+1)
logx=m+n
x=10m+n
logy=m−ny=10m−n
(ii)log10x=−2
x=10−2
Question 27
If log (p+q3)=12=(log p + log q) prove that p² + q² = 7pq.
Sol :
log(p+q3) =12(logp+logq)
=12log(pq)
=log√pq
p+q3 =√pq
(p+q)2=9pq
p2+2pq+q2=9pq
p2+q2=7pq
Question 28
If x2+y2=51xy, prove that log 12=12(log x + log y).
Sol :
⇒x2+y2=51xy
⇒(x-y)^{2}+2 x y=51 x y – 2xy
(Subtracting 2xy)
⇒ (x – y)² = 49xy
⇒ \frac{(x-y)^2}{49}=xy
⇒\frac{(x-y)^2}{49}=xy
⇒\left(\frac{x-y}{7}\right)^2=xy
No comments:
Post a Comment