Exercise 7 B
Question 1
Express each sum or difference as a single logarithm.
(i) $\log 6+\log 5$
$=\log (6 \times 5)=\log 30$
(ii) $\log 12-\log 2$
$=\log (12 / 2)$ $=\log 6$
(iii) $\log _{3} 5+\log _{3} 2+\log _{3} 4$
$=\log _{3}(5 \times 2 \times 4)$ $=\log _{3} 40$
(iv) $\log _{2} 12-\log _{2} 2+\log _{2} 5$
$=\log _{2}(12 \times 5 \div 2)$ $=\log _{2} 30$
(i) $\log 6+\log 5$
$=\log (6 \times 5)=\log 30$
(ii) $\log 12-\log 2$
$=\log (12 / 2)$ $=\log 6$
(iii) $\log _{3} 5+\log _{3} 2+\log _{3} 4$
$=\log _{3}(5 \times 2 \times 4)$ $=\log _{3} 40$
(iv) $\log _{2} 12-\log _{2} 2+\log _{2} 5$
$=\log _{2}(12 \times 5 \div 2)$ $=\log _{2} 30$
Question 2
(i) $\frac{\log _{40} 1000}{\log _{40} 100}$
$=\frac{\log _{40} 10^{3}}{\log _{40} 10^{2}}=\frac{3}{2}$
(ii) $\frac{\log 32}{\log 4}$
$=\frac{\log 2^{5}}{\log 2^{2}}=5 / 2$
(iii) $\log _{2} 8$
$=\log _{2} 2^{3}=3$
Question 3
(i) $\log \left(m^{2}\right)-\log m$
$=\log \left(\mathrm{m}^{2} / \mathrm{m}\right)=\log \mathrm{m}$
(ii) $\log y^{2}+\log y$
$\frac{\log y^{2}}{\log y}$
$=\frac{2 \log y}{\log y}=2$
(iii)$\log 24-\log 3$
$=\log (24 / 3)$
$=log8=$
=$\log 2^{3}$
=$3 \log 2$
(iv) $\log 32+\log 4-\log 16$
$=\log (32 \times 4 / 16)$
$=\log 8=\log 2^{3}=3 \log 2$
(v) $log 256-log1024$
$=\log \left(\frac{256}{1024}\right)$
$\log 2^{-2}=-2 \log 2$
(vi) $\log 256 \div \log 1024$
$=\frac{\log 256}{\log 1024}$
$=\frac{\log 4^{4}}{\log 4^{5}}$
$=4 / 5$
Question 4
Prove that:
(i) L.H.S =$\log 7+\log 1 / 7$
$=\log 7+\log 7^{-1}$
$=\log 7-\log 7$
$=0=R \cdot H S$
(ii)R.H.S $=3 \log 2+2 \log 3$
$=\log 2^{3}+\log 3^{2}$
$=log8+log9$
$=\log (8 \times 9)=\log 72$=L.H.S
(iii)
$\begin{aligned} R \cdot H \cdot S &=6 \log 2+\log 7 \\ &=\log 26+\log 7 \\ &=\log 64+ \log 7 \\ &=\log (64 \times 7) \end{aligned}$
=log $448=$ L.H.S
(iv) $\log \frac{4}{47}$+ $\log 33 / 18$+ log $22 / 21$
$\log 4 / 7+\log 11 / 6-\log 22/ 21$
$\log 4-\log 7+\log 11-\log 6-\log 22$+log21
$2 \log 2-\log 7+\log 11-\log 2-\log 3$- $\log 11-\log 2$+ $4 \log 3+\log 7$
$O=R \cdot H \cdot L$
(v) $L \cdot H \cdot S=10 log 3 \sqrt{62 / 9}$
$=\log \left(\frac{56}{9}\right)^{1 / 3}$
$\frac{1}{3}(\log 56-log9)$
$\left.\frac{1}{3}( \log 7+\log 8-2 \log 3\right)$
$=\frac{1}{3}(\log 7-2 \log 3)+\log 2$=R.H.S
(vi) L.H.S $(\log a)^{2}-(\log b)^{2}$
$=2 \log a-2 \log b$
$=2(\log a-\log b)$
$=2 \log a / b$
R.H,S $=\log (a b)log(a / b)$
=(log a+ log b)(log a- log b)
= $(\log a)^{2}+(\log b)^{2}$
$=2(\log a-\log b)$
$=2 \log a /b$
L.H.S $=$ R.H.S
Question 5
Solve :
(i)$\log _{10} n+\log _{10} 5=1$
sol:$\log _{10}(5 n)=1$
$5 n=10$
$n=2$
(ii) $\log _{3} n-\log _{3} 4=2$
sol: $\log _{3}(2 / 4)=2$
$n / 4=3^{2}=9$
$n=36$
(iii) $\log _{6} n-\log _{6}(n-1)=\log _{6} 3$
Sol: $\log _{6} \frac{n}{(n-1)}=\log _{6} 3$
$\frac{n}{n-1}=3$
$n=3 n-3$
$2 n=3$
$n=3 / 2$
(iv) $2 \log x=4 \log 3$
Sol: $\log x=10 y 3^{2}$
$x=9$
Question 6
Simplify : (Do not use tables)
(i) $\log _{10} 5+\log _{10} 2$
$=\log _{10}(5 \times 2)$
$=\log _{10} 10$
$=1$
(ii) $\log _{10} 4+\log _{10} 5+\log _{10} 2$
$=\log _{10} 20-\log _{10} 2$
$=\log _{10} 20-\log _{10} 2$
$=\log _{10}(20 / 2)$
$=\log _{10} 10$
$=1$
(iii) $2 \log _{10} 5+\log _{10} 8-\frac{1}{2} \log _{10} 4$
=$\log _{10} 5^{2}+\log _{10} 8-\log _{10} 4^{1 / 2}$
$=\log _{10}(25 \times 8$ /$4^{1 / 2}$
$\log _{10}(25 \times 8 / 2)$
=$\log _{10} 100$
$=\log _{10} 10^{2}$
=2
No comments:
Post a Comment