Exercise 7 B
Question 1
Express each sum or difference as a single logarithm.
(i) log6+log5
=log(6×5)=log30
(ii) log12−log2
=log(12/2) =log6
(iii) log35+log32+log34
=log3(5×2×4) =log340
(iv) log212−log22+log25
=log2(12×5÷2) =log230
(i) log6+log5
=log(6×5)=log30
(ii) log12−log2
=log(12/2) =log6
(iii) log35+log32+log34
=log3(5×2×4) =log340
(iv) log212−log22+log25
=log2(12×5÷2) =log230
Question 2
(i) log401000log40100
=log40103log40102=32
(ii) log32log4
=log25log22=5/2
(iii) log28
=log223=3
Question 3
(i) log(m2)−logm
=log(m2/m)=logm
(ii) logy2+logy
logy2logy
=2logylogy=2
(iii)log24−log3
=log(24/3)
=log8=
=log23
=3log2
(iv) log32+log4−log16
=log(32×4/16)
=log8=log23=3log2
(v) log256−log1024
=log(2561024)
log2−2=−2log2
(vi) log256÷log1024
=log256log1024
=log44log45
=4/5
Question 4
Prove that:
(i) L.H.S =log7+log1/7
=log7+log7−1
=log7−log7
=0=R⋅HS
(ii)R.H.S =3log2+2log3
=log23+log32
=log8+log9
=log(8×9)=log72=L.H.S
(iii)
R⋅H⋅S=6log2+log7=log26+log7=log64+log7=log(64×7)
=log 448= L.H.S
(iv) log447+ log33/18+ log 22/21
log4/7+log11/6−log22/21
log4−log7+log11−log6−log22+log21
2log2−log7+log11−log2−log3- log11−log2+ 4log3+log7
O=R⋅H⋅L
(v) L⋅H⋅S=10log3√62/9
=log(569)1/3
13(log56−log9)
13(log7+log8−2log3)
=13(log7−2log3)+log2=R.H.S
(vi) L.H.S (loga)2−(logb)2
=2loga−2logb
=2(loga−logb)
=2loga/b
R.H,S =log(ab)log(a/b)
=(log a+ log b)(log a- log b)
= (loga)2+(logb)2
=2(loga−logb)
=2loga/b
L.H.S = R.H.S
Question 5
Solve :
(i)log10n+log105=1
sol:log10(5n)=1
5n=10
n=2
(ii) log3n−log34=2
sol: log3(2/4)=2
n/4=32=9
n=36
(iii) log6n−log6(n−1)=log63
Sol: log6n(n−1)=log63
nn−1=3
n=3n−3
2n=3
n=3/2
(iv) 2logx=4log3
Sol: logx=10y32
x=9
Question 6
Simplify : (Do not use tables)
(i) log105+log102
=log10(5×2)
=log1010
=1
(ii) log104+log105+log102
=log1020−log102
=log1020−log102
=log10(20/2)
=log1010
=1
(iii) 2log105+log108−12log104
=log1052+log108−log1041/2
=log10(25×8 /41/2
log10(25×8/2)
=log10100
=log10102
=2
No comments:
Post a Comment