Exercise 7(A)
Question 1
Give an equivalent exponential form for each statement:
(i) log28=3
Sol: 23=8
(ii) log381=4
Sol : 34=81
(iii) log21/2=−1
Sol : 1/2=2−1
(iv) log51/25=−2
Sol : 125=5−2
(v) 1/2=log42
Sol : 41/2=2
(vi) 1/3=log273
Sol : 271/3=3
Question 2
Give an equivalent logarithmic form for each statement
(i) 16=24
Sol: Or, log216=4
(ii) 25=52
Sol: Or, log525=2
(iii) 81=34
Sol: Or, log381=4
(iv) 60=1
Sol:log61=0
(v) 81/3
Sol: log82=1/3
(vi) 1/9=3−2
Sol: log31/9=−2
(vii) 1/32=2−5
Sol: log21/32=-5
(viii) 101.4969=31.4
Sol: log1031⋅4=1.4969
Question 3
Find the value of each logarithms given below:
(i) log101000
=log10103=3
(ii)
log28=log223=3
(iii) log381
=log334=4
(iv) log100.1
=log101/10
=log1010−1
=-1
(v)
log100.01=log101/100=log1010−2=−2
(vi)
log100.0001.=log101/10000.=log1010−4=−4
(vii)log21/4
=log22−2=−2
(viii)
log31/27=log33−3=−3
(ix)
log31=0
(x) log1/21/4
=log1/21/22
=2
(xi) log279
=log9log27
=log32log33
=23 log3log3
=23
(v) log10100=x
Or, 10x=102
X=2
(vi) log20.5=x
2x=0.5=5/10=1/2=2−1
(vii) log10x=a
10a=x
( True )
Question 4
Find the value of x
(i) logx216=3
(ii) log4x=–4
(iii) log3x=0
(iv) log8x=23
(v) log10100=x
(vi) log20.5=x
Sol :
(i) logx216=3
⇒ x³ = 216 = (6)³
Comparing, we get
x = 6
(ii) log4x=–4
⇒ (4)−4=x
⇒ 144=x
⇒ x=1256
∴ x=1256
(iii) log3x=0
⇒ 3° = x
⇒ x = 1
∴ x = 1
(iv) log8x=23
⇒ (8)23
⇒ x=(23)23=23×23 = 2²
⇒ x = 2×2 = 4
∴ x = 4
(v) log10100=x
⇒ 10x=100
⇒ 10x=(10)2
Comparing, we get
x = 2
(vi) log20.5=x
⇒ 2x=0.5=12
⇒ 2x=(2)−1
Comparing both sides
x = – 1
Question 5
Answer true or false : If log10x=a, then 10a=x
Sol :
∵ log10x=a
⇒ 10a=x
Which is true.
No comments:
Post a Comment