Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 7 Logarithms Exercise 7(A)

 Exercise 7(A)

Question 1

Give an equivalent exponential form for each statement:
(i) log28=3
Sol: 23=8

(ii) log381=4
Sol : 34=81

(iii) log21/2=1
Sol :  1/2=21

(iv) log51/25=2
Sol :  125=52

(v) 1/2=log42
Sol :  41/2=2

(vi) 1/3=log273
Sol :   271/3=3


Question 2

Give an equivalent logarithmic form for each statement
(i) 16=24
Sol:  Or, log216=4

(ii) 25=52
Sol:  Or, log525=2

(iii) 81=34
Sol: Or, log381=4

(iv) 60=1
Sol:log61=0

(v) 81/3
Sol: log82=1/3

(vi) 1/9=32
Sol: log31/9=2

(vii) 1/32=25
Sol: log21/32=-5

(viii) 101.4969=31.4
Sol: log10314=1.4969


Question 3

Find the value of each logarithms given below:
(i) log101000
=log10103=3

(ii) 
log28=log223=3

(iii) log381
=log334=4

(iv) log100.1
=log101/10
=log10101
=-1

(v)
log100.01=log101/100=log10102=2

(vi) 
log100.0001.=log101/10000.=log10104=4

(vii)log21/4
=log222=2

(viii)
log31/27=log333=3

(ix)
log31=0

(x)  log1/21/4
=log1/21/22
=2

(xi) log279
=log9log27
=log32log33
=23 log3log3
=23

(v) log10100=x
Or, 10x=102
X=2

(vi) log20.5=x 
2x=0.5=5/10=1/2=21

(vii) log10x=a
10a=x
( True )


Question 4

Find the value of x
(i) logx216=3
(ii) log4x=4
(iii) log3x=0
(iv) log8x=23
(v) log10100=x
(vi) log20.5=x
Sol :
(i) logx216=3
⇒ x³ = 216 = (6)³
Comparing, we get
x = 6

(ii) log4x=4
(4)4=x
144=x
x=1256
x=1256

(iii) log3x=0
⇒ 3° = x
⇒ x = 1
∴ x = 1

(iv) log8x=23
(8)23
x=(23)23=23×23 = 2²
⇒ x = 2×2 = 4
∴ x = 4

(v) log10100=x
10x=100
10x=(10)2
Comparing, we get
x = 2

(vi) log20.5=x
2x=0.5=12
2x=(2)1
Comparing both sides
x = – 1




Question 5

Answer true or false : If log10x=a, then 10a=x
Sol :
log10x=a
10a=x
Which is true.


No comments:

Post a Comment

Contact Form

Name

Email *

Message *