Processing math: 100%

SChand CLASS 9 Chapter 6 Indices/Exponent Exercise 6(D)

 Exercise 6 D


Question 1

2x+1=4x3

Sol:
2x+1=4x3
=2x+1=(22)x3
=2x+1=22x6
Comparing both sides of powers
x+1=2x62xx=1+6=x=7
So= x=7 Ans 

Question 2

x34=18
Sol:

x3/4=18=18=123=23
x14×(3)=23
=(x1/4)3=23
=(x1/4)=2  doing comparing.
=x=24
=x=16
So= x=16 Ans 



Question 3

(x1)23=25

Sol:

(x1)2/3=25=25=52(x1)2/3=(53)2/3x1=53 doing comparing x1=125

x-1=125
x=125+1
x=126 Ans.


Question 4

25x+3=8x+3
Sol:
25x+3=8x+3
=(23)x+3
=25x+3=23x+9
5x+3=3x+3 
5x3x=93
2x=6
x=3


Question 5

\left(\sqrt{\frac{5}{7}}\right)^{x-1} &=\left(\frac{125}{343}\right)^{-1}
Sol:
(57)x1=(125343)1(57)x12=(5373)1=(57)3
if comparing both sides power

x12=3=x1=6x=6+1=x=5x0,x=5 Ans. 


Question 6

$11^{3-4 x}=\left(\sqrt{\frac{1}{121}}\right)^{-2}
Sol:
=1134x=(1121)2=(1(11)2)2
=1134x=11(2)×(2)2
=1134x=112

Comparing both side of power
34x=24x=23=1
4x=1x=(+14)
So x=14 Arus.


Question 7

Solve for x,(34)2x+12=132 

Sol :
(34)2x+12=132 
(3(2)2)2x+12=125 {25=2×2×2×2π2=32}
[23/3]2x+1/2=25
=22/3(2x+12)=25

If comparing 

23(2x+12)=5
43x+13=5
So 4x+1=154x=131=16x=164x=4 Ans 


Question 8

Find the value of .Y if  $\sqrt{\frac{p}{q}}=\left(\frac{q}{p}\right)^{1-2 x}$
Sol:
pq=(qp)12x(pq)1/2=(p2)(12x)=(pq)2x12x1=122x=12+1=32
x=32×2=34
x=34 Ans


Question 9

Solve for x, 2^{3}\left(5^{\circ}+3^{2 x}\right) &=8 \frac{8}{27}
Sol:
23(5+32x)=8827[2778+8]8(1+32x)=22427[5=1]

=1+32x=22427×18

=2827
=32x=28271
=282727=127
32x=132=33
2x=3
x=3/2Sox=32 Ans


Question 10

Solve for x, (80+23)=(0.6)23x
Sol:
(80+23)=(0.6)23x 
(8=1)
1+23=(610)23x
(53)=(35)23x
(53)1/2=(53)(23x)
(53)1/2=(53)2+3x
2+3x=12 [comparing in power]
=3x=12+2=52
=x=52×3=56
x=56


Question 11

32x+4+1=23x+2
Sol:
32x+4+1=23x+2
32x34+1=23x32
8132x+1=183x
8132x183x+1=0
3x=a,
32x=a2
81a218a+1=0(9a)22×9a+1=0(9a1)2=0:9a1=09a=1=09a=193x=1
3x=19=32  If comparing both sides power
x=-2 ans.



Question 12

52x+1=65x1
Sol:
52x+1=65x1=52x5265x+1=0552x65x+1=0
5x=a and 52x=a2
5a26a+1=05a25aa+1=05a(a1)1(a1)=0(a1)(5a1)=0
=a1=0a=2
5a1=0
5a=1
a=15

case (i)
a=1,5x=1=5x=0
case (ii) a=13,5x=15=5L x=1
x=1
 Hence x=0x=1


Question 13

22x2x+3=24
Sol:
22x2x+3=2422x2x23+24=022x82x+16=02x=a,22x=a2a28a+16=0(a)22×a×4+(4)2=0
=(a4)2=0
a4=0
a=2x=4
2x=22(Comparing)
x=2 Ans


Question 14

9x=3y2,81y=32×(27)x
Sol:
9x=3y2,81y=32×(27)x[(3)2]x=(3)y232x=3y2
comparing both sides power.

2x=y2
y=2x+2............(equal -1)

81y=32×(27)x
(34)y=32(33)x(3×3×3×3=81)
(34)y=32×33x34y=33x+24y=3x+2........(equal -2)

from equation -1

a(2x+2)=3x2
8x+8=3x+2
3x3x=28
5x=6
x=65

y=2x+2=2×(65)+2
=125+2=12+105=25
x=65
y=25
Hence proved


Question 15

21x2=4y71+x×(49)2y=1
Sol:

21x2=4y21x2=22y
1x2=2y

2x=4y
4y+x=2
x=24y...........(eq 2)
as 71+x×(49)2y=1
71+x((7)2)2y=1.........(1=7)
71+x74y=771+x4y=71+x4y=01+(24y)4y=0
1+x4y=0
1+(24y)4y=0

From equation 1

x=24y
1+24y4y=0
38y=0
8y=3y=3/8.
x=24y=24×38
=23/2
=432=12

Hence 
x=12
y=3/8


Question 16

2x=16×2y,(27)x=9×32y
Sol:
2x=16×2y,(27)x=9×32y2x=16×2y2x=24×2y2x=24+y

Comparing both sides power
x=4+y............(eq-1)
 (27)x=9×32y(33)x=32×32y33x=32y+2
3x=2y+1 (3 Common )
3(4+y)=2y+2 From Eq-1
12+3y=2y+2
3y2y=212
y=10

x=4+y=410=6
[x=6y=10] Hence proved

1 comment:

Contact Form

Name

Email *

Message *