SChand CLASS 9 Chapter 6 Indices/Exponent Exercise 6(D)

 Exercise 6 D


Question 1

$2^{x+1}=4^{x-3}$

Sol:
$2^{x+1}=4^{x-3}$
$=2^{x+1}=\left(2^{2}\right)^{x-3}$
$=2^{x+1}=2^{2 x-6}$
Comparing both sides of powers
$\begin{aligned}& x+1=2 x-6 \\\Rightarrow & 2 x-x=1+6 \\=& x=7\end{aligned}$
So= x=7 Ans 

Question 2

$ x^{\frac{-3}{4}}=\frac{1}{8} $
Sol:

$\begin{aligned} x^{-3 / 4} &=\frac{1}{8} \\ &=\frac{1}{8}=\frac{1}{2^{3}}=2^{-3} \end{aligned}$
$x \frac{1}{4} \times(-3)=2^{-3}$
$=\left(x^{1 / 4}\right)^{-3}=2^{-3}$
=$\left(x^{1 / 4}\right)=2$  doing comparing.
$=x=2^{4}$
$=x=16$
So= x=16 Ans 



Question 3

$(x-1)^{\frac{2}{3}}=25$

Sol:

$\begin{aligned}(x-1)^{2 / 3} &=25 \\ &=25=5^{2} \\(x-1)^{2 / 3} &=\left(5^{3}\right)^{2 / 3} \\ x-1 &=5^{3} \text { doing comparing  } \\ x-1 &=125 \end{aligned}$

x-1=125
x=125+1
x=126 Ans.


Question 4

$2^{5 x+3}=8^{x+3}$
Sol:
$2^{5 x+3}=8^{x+3}$
$=\left(2^{3}\right)^{x+3}$
$=2^{5 x+3}=2^{3 x+9}$
$5x+3=3x+3$ 
$5x-3x=9-3$
2x=6
x=3


Question 5

$\left(\sqrt{\frac{5}{7}}\right)^{x-1} &=\left(\frac{125}{343}\right)^{-1}$
Sol:
$\begin{aligned}\left(\sqrt{\frac{5}{7}}\right)^{x-1} &=\left(\frac{125}{343}\right)^{-1} \\ \Rightarrow\left(\frac{5}{7}\right)^{\frac{x-1}{2}} &=\left(\frac{5^{3}}{7^{3}}\right)^{-1}=\left(\frac{5}{7}\right)^{-3} \end{aligned}$
if comparing both sides power

$\begin{aligned} & \frac{x-1}{2}=-3 \\=& x-1=-6 \\ \Rightarrow & x=-6+1 \\=& x=-5 \\ & x_{0}, x=-5 \text { Ans. } \end{aligned}$


Question 6

$11^{3-4 x}=\left(\sqrt{\frac{1}{121}}\right)^{-2}
Sol:
=$11^{3-4 x}=\left(\sqrt{\frac{1}{121}}\right)^{-2}=\left(\sqrt{\frac{1}{(11)^{2}}}\right)^{-2}$
=$11^{3-4 x}=11 \frac{(-2) \times(-2)}{2}$
=$11^{3-4 x}=11^{2}$

Comparing both side of power
$\begin{aligned}3-4 x &=2 \\\Rightarrow-4 x &=2-3 \quad=-1\end{aligned}$
$\begin{aligned}&-4 x=-1 \\&x=\left(+\frac{1}{4}\right)\end{aligned}$
So $x=\frac{1}{4}$ Arus.


Question 7

Solve for x,$(\sqrt[3]{4})^{2 x+\frac{1}{2}}=\frac{1}{32}$ 

Sol :
$(\sqrt[3]{4})^{2 x+\frac{1}{2}}=\frac{1}{32}$ 
$\left(\sqrt[3]{(2)^{2}}\right)^{2 x+\frac{1}{2}}=\frac{1}{2^{5}}$ $\left\{\therefore 2^{5}=2 \times 2 \times 2 \times 2 \pi 2=32\right\}$
$\Rightarrow \quad\left[2^{3 / 3}\right]^{2 x+1 / 2}=2^{5}$
$=2^{2 / 3\left(2 x+\frac{1}{2}\right)}=2^{-5}$

If comparing 

$\frac{2}{3}\left(2 x+\frac{1}{2}\right)=-5$
$\frac{4}{3} x+\frac{1}{3}=-5$
So $\begin{aligned} & 4 x+1=-15 \\ & 4 x=-13-1=-16 \\ \therefore & x=\frac{-16}{4} \\ \therefore & x=-4 \text { Ans } \end{aligned}$


Question 8

Find the value of .Y if  $\sqrt{\frac{p}{q}}=\left(\frac{q}{p}\right)^{1-2 x}$
Sol:
$\begin{aligned} & \sqrt{\frac{p}{q}}=\left(\frac{q}{p}\right)^{1-2 x} \\ &\left(\frac{p}{q}\right)^{1 / 2}=\left(\frac{p}{2}\right)^{-(1-2 x)} \\=&\left(\frac{p}{q}\right)^{2 x-1} \\ & 2 x-1=\frac{1}{2} \\ & 2 x=\frac{1}{2}+1=\frac{3}{2} \end{aligned}$
$\Rightarrow x=\frac{3}{2 \times 2}=\frac{3}{4}$
$\therefore x=\frac{3}{4}$ Ans


Question 9

Solve for x, $2^{3}\left(5^{\circ}+3^{2 x}\right) &=8 \frac{8}{27}$
Sol:
$\begin{aligned} 2^{3}\left(5^{\circ}+3^{2 x}\right) &=8 \frac{8}{27} \quad \therefore[2778+8] \\ 8\left(1+3^{2 x}\right) &=\frac{224}{27} \quad\left[5^{\circ}=1\right] \end{aligned}$

=$1+3^{2 x}=\frac{224}{27} \times \frac{1}{-8}$

$=\frac{28}{27}$
=$3^{2 x}=\frac{28}{27}-1$
=$\frac{28-27}{27}=\frac{1}{27}$
$3^{2 x}=\frac{1}{3^{2}}=3^{-3}$
$2 x=-3$
$x=-3 / 2 \quad So \quad x=\frac{-3}{2}$ Ans


Question 10

Solve for x, $\sqrt{\left(8^{0}+\frac{2}{3}\right)}=(0.6)^{2-3 x}$
Sol:
$\sqrt{\left(8^{0}+\frac{2}{3}\right)}=(0.6)^{2-3 x}$ 
$\left(8^{\circ}=1\right)$
$\sqrt{1+\frac{2}{3}}=\left(\frac{6}{10}\right)^{2-3 x}$
$\sqrt{\left(\frac{5}{3}\right)}=\left(\frac{3}{5}\right)^{2-3 x}$
$\left(\frac{5}{3}\right)^{1 / 2}=\left(\frac{5}{3}\right)^{-(2-3 x)}$
$\left(\frac{5}{3}\right)^{1 / 2}=\left(\frac{5}{3}\right)^{-2+3 x}$
$-2+3 x=\frac{1}{2} \quad$ [comparing in power]
$=3 x=\frac{1}{2}+2=\frac{5}{2}$
$=x=\frac{5}{2 \times 3}=\frac{5}{6}$
$\therefore x=\frac{5}{6}$


Question 11

$3^{2 x+4}+1=2 \cdot 3^{x+2}$
Sol:
$3^{2 x+4}+1=2 \cdot 3^{x+2}$
$3^{2 x} \cdot 3^{4}+1=2 \cdot 3^{x} \cdot 3^{2}$
$81 \cdot 3^{2 x}+1=18 \cdot 3^{x}$
$81 \cdot 32 x-18 \cdot 3^{x}+1=0$
$3 x=a$,
$3^{2 x}=a^{2}$
$\begin{aligned} \therefore & 81 a^{2}-18 a+1=0 \\ &(9 a)^{2}-2 \times 9 a+1=0 \\ &(9 a-1)^{2}=0 \\ &: 9 a-1=0 \\ \Rightarrow & 9 a=1=0 \\ \Rightarrow & 9 a=1 \\ \Rightarrow & 9 \cdot 3^{x}=1 \end{aligned}$
$3^{x}=\frac{1}{9}=3^{-2}$  If comparing both sides power
x=-2 ans.



Question 12

$5^{2 x+1}=6 \cdot 5^{x}-1 $
Sol:
$\begin{aligned} & 5^{2 x+1}=6 \cdot 5^{x}-1 \\=& 5^{2 x} \cdot 5^{2}-6 \cdot 5^{x}+1=0 \\ & 5 \cdot 5^{2 x}-6 \cdot 5^{x}+1=0 \end{aligned}$
$\begin{aligned} 5^{x} &=a \\ \text { and } 5^{2 x} &=a^{2} \end{aligned}$
$\begin{aligned} \therefore \quad 5 a^{2}-6 a+1 &=0 \\ 5 a^{2}-5 a-a+1 &=0 \\ 5 a(a-1)-1(a-1) &=0 \\(a-1)(5 a-1) &=0 \end{aligned}$
$\Rightarrow$
=$\begin{aligned}a-1 &=0 \\a &=2\end{aligned}$
$5 a-1=0$
$5 a=1$
$a=\frac{1}{5}$

case (i)
$\begin{aligned}&a=1,5^{x}=1=5^{\circ} \\&\therefore x=0\end{aligned}$
case (ii) $a=\frac{1}{3}, \quad 5^{x}=\frac{1}{5}=5^{-L}$ $\therefore x=-1$
$\therefore x=-1$
$\begin{aligned} \text { Hence } x &=0 \\ x &=-1 \end{aligned}$


Question 13

$2^{2 x}-2^{x+3}=-2^{4}$
Sol:
$\begin{aligned} & 2^{2 x}-2^{x+3}=-2^{4} \\ & 2^{2 x}-2^{x} \cdot 2^{3}+2^{4}=0 \\ & 2^{2 x}-8 \cdot 2 x+16=0 \\ \because & 2^{x}=a, \quad 2^{2 x}=a^{2} \\ & a^{2}-8 a+16=0 \\ \Rightarrow &(a)^{2}-2 \times a \times 4+(4)^{2}=0 \end{aligned}$
$=(a-4)^{2}=0$
$a-4=0$
$a=2 x=4$
$2 x=2^{2}$(Comparing)
x=2 Ans


Question 14

$9^{x}=3^{y-2}, 81^{y}=3^{2} \times(27)^{x}$
Sol:
$\begin{aligned}&9^{x}=3^{y-2}, 81^{y}=3^{2} \times(27)^{x} \\&{\left[(3)^{2}\right]^{x}=(3)^{y-2}} \\&\Rightarrow 3^{2 x}=3 y^{-2}\end{aligned}$
comparing both sides power.

$2 x=y-2$
$y=2 x+2$............(equal -1)

$\therefore 81^{y}=3^{2 \times(27)^{x}}$
$\Rightarrow\left(3^{4}\right)^{y}=3^{2}\left(3^{3}\right)^{x} \quad(3 \times 3 \times 3 \times 3=81)$
$\begin{aligned}\left(3^{4}\right)^{y} &=3^{2} \times 3^{3 x} \\-3^{4 y} &=3^{3 x+2} \\ \therefore 4 y &=3 x+2 \end{aligned}$........(equal -2)

from equation -1

$a(2 x+2)=3 x-2$
$8 x+8=3 x+2$
$3 x-3 x=2-8$
$5 x=-6$
$x=\frac{-6}{5}$

$\therefore y=2 x+2=2 \times\left(-\frac{6}{5}\right)+2$
$=\frac{-12}{5}+2=\frac{-12+10}{5}=\frac{-2}{5}$
$\therefore x=\frac{-6}{5}$
$\therefore y=\frac{-2}{5}$
Hence proved


Question 15

$2^{1-\frac{x}{2}}=4^{y}$ , $7^{1+x} \times(49)^{-2 y}=1$
Sol:

$2^{1-\frac{x}{2}}=4^{y} \Rightarrow 2^{1-\frac{x}{2}}=2^{2 y}$
$1-\frac{x}{2}=2 y$

$2-x=4 y$
$4 y+x=2$
$x=2-4 y$...........(eq 2)
as $7^{1+x} \times(49)^{-2 y}=1$
$7^{1+x} \cdot\left((7)^{2}\right)^{-2 y}=1$.........(1=7)
$\begin{aligned} 7^{1+x} \cdot 7^{-4 y} &=7^{\circ} \\ 7^{1+x-4 y} &=7^{\circ} \\ \therefore \quad 1+x-4 y &=0 \\ 1+(2-4 y) &-4 y=0 \end{aligned}$
$\therefore \quad 1+x-4 y=0$
$\Rightarrow 1+(2-4 y)-4 y=0$

From equation 1

$x=2-4 y$
$1+2-4 y-4 y=0$
$3-8 y=0$
$8 y=3 \Rightarrow y=3 / 8 .$
$x=2-4 y=2-4 \times \frac{3}{8}$
$=2-3 / 2$
$=\frac{4-3}{2}=\frac{1}{2}$

Hence 
$x=\frac{1}{2}$
$y=3 / 8$


Question 16

$2^{x}=16 \times 2^{y},(27)^{x}=9 \times 3^{2 y}$
Sol:
$\begin{aligned} 2^{x} &=16 \times 2^{y},(27)^{x}=9 \times 3^{2 y} \\ 2^{x} &=16 \times 2^{y} \\ 2^{x} &=2^{4} \times 2 y \\ 2^{x} &=2^{4}+y \end{aligned}$

Comparing both sides power
$\therefore x=4+y$............(eq-1)
 $\begin{aligned}(27)^{x} &=9 \times 3^{2 y} \\\left(3^{3}\right)^{x} &=3^{2} \times 3^{2} y \\ \therefore 3^{3 x} &=3^{2 y+2} \end{aligned}$
$3 x=2 y+1$ (3 Common )
$3(4+y)=2 y+2$ From Eq-1
$12+3 y=2 y+2$
$3 y-2 y=2-12$
$y=-10$

$\begin{aligned} \therefore x=4+y &=4-10 \\ &=-6 \end{aligned}$
$\left[\begin{array}{l}x=-6 \\ y=-10\end{array}\right]$ Hence proved

1 comment:

Contact Form

Name

Email *

Message *