Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 6 Indices/Exponent Exercise 6(A)

 Exercise 6(A)

Question 1

Write the products in the exponential form:

(i) (x . x . x . x. x) (x. x)

(ii) -1 (n . n. n) (n . n)

(iii) y8×y5×y2

(iv) x(x4)

(v) (3a7b8c9)×(5a27b16c8)

(vi) (x+2)2.(x+2)4

(vii) (2m32n)3a2b×(2m3n)6a+10b

(viii) x2a+bc.x2c+ab.x2b+ca

Sol :

(i) (x.x.x.x.x)(x.x)

x5x2

=xmxnxm+n

=x5+2x2


(ii) 1.(nn,n)(nn)

1n3n2

xmxn=xm+n

1n3+2

n5


(iii) y8×y5×y2

y8+5+2

y15


(iv) x(x5)

x×x5

x1+5

x6


(v) (3a7b8c9)×5(a27b16c8)

3×a7×b8×c9×5×c27×b16×c8

xmxn=xm+n

3×5(a7×a27)(b8×b16)(c9×c8)

3×5a7+27×b8+16c9+8

15a34b24c17


(vi) (2m+3n)3n2b×(2m3n)6a+10b

xmxnxm+n

(2m3n)3a2b+6a+10b

(2m3n)(3a+6a2b+10b)

(2m3n)9a+0b


(vii) x2a+bcx2c+abx2b+ca

xmxnx0xm+n+0

x2a+bc+2c+ab+2b+ca

x2a+2c+2b


Question 2

Write each expression in the simpler form:

(i) xy³

(ii) (x)5

(iii) (2xy)4

(iv) 12

(v) (x2)5

(vi) (73)8

(vii) (6a2)3

(viii) (x2y3)3

(ix) (p2)5×(p3)2

(x) 3(x4y3)10×5(x2y2)3

(xi) (c3d2)7

(xii) (3p24q2)n

(xiii) (a2b2x2y3)m

Sol :

(i) (xy)3

(xy)m=xmym

(xy)3=x3y3



(ii) (x)5

⇒(-x)×(-x)×(-x)×(-x)×(-x)

⇒(-x)5



(iii) (2xy)4

⇒(-2xy)×(-2xy)×(-2xy)×(-2xy)

⇒(-2xy)4

⇒(16x4y4)



(iv) (pq)8

p8q8



(v) (x2)5

=x2×5=x10



(vi) 73)8

73×8

724



(vii) (6a2)3

(6a2)×(6a2)×(6a2)

(216a2+2+2)

216a6


(viii) (x2y3)3

(x2y3)×(x2y3)×(x2y3)

(x2+2+2y3+3+3)

x6y6


(ix) (p2)5×(p3)2

p2×5+3×2

p10+6

p16


(x) 3(x4y3)10×5(x2y2)3

3(x4y10y3×10)×5(x2×3y2×3)

3×5(x40y30x6y6)

15(x40+6y30+6)

15(x46y36)

15x46y30


(xi) (c3d2)7

(c3)7(d2)7

c21d14


(xii) (3p24q2)a

=3ap2a4aq2a


(xiii) (a2b2x2y3)m

=(a2b2)m(x2y3)m

=a2m×b2mx2m×y3m


Question 3

Find the quotient:

(i) x6+x2

(ii) x2a+x4

(iii) p5q3p3q2

(iv) (8x27y21)÷(16x6y17)

(v) (8x27y21)÷(16x6y17)

(vi) 4pq2(5pq3)10p2q2

(vii) (4ab2)216ab

(viii) xabycdx2bayc

(ix) (m3n9)6m2n4

(x) [(x2a4)2xa+5]3

Sol :

(i) x6÷x2
xm÷xnxmn
=x6÷x2
=x62=x4


(ii) x2÷xa

=x2aa

=xa


(iii) p5q3p3q2

=p5q3÷p3q2

=p52q32

=p2q1

=p2q


(iv) 35x10y57x3y3

=35x10y5÷(7x3y3)

=3557x103y53

=5x7y2


(v) 8x27y21÷(16x6y17)

=8162x276y2117

=12x21y4


(vi) 4pq2(5pq3)10p2q2

=4×5.p1+1.q2+310p2q2

=20p2q510p2q2

=2p22q52=2p0q2

=2q2


(vii) (4ab2)216ab

=16a2b2+216ab

=a2.b4÷ab=a21.b41

=ab3


(viii) xabycdx2bayc

=x(ab)(2ba)ycdc

=xab2b+ayd

=x2a3byd


(ix) (m3n9)6m2n4

=m3n×69×6m2n4

=m18n54m2n4

=m10n54(2n4)

=m18n542n+4


=m16n50


(x) [(x2a4)2xa+5]3

(x2×2a4×2x9+5)3

(x4a8xa+5)3

(x4a8(a+5))3

(x4a8a5)3

(x3a13)3

39a39

No comments:

Post a Comment

Contact Form

Name

Email *

Message *