Processing math: 0%

SChand CLASS 9 Chapter 6 Indices/Exponent Exercise 6(A)

 Exercise 6(A)

Question 1

Write the products in the exponential form:

(i) (x . x . x . x. x) (x. x)

(ii) -1 (n . n. n) (n . n)

(iii) y8×y5×y2

(iv) – x (- x^4)

(v) (3a^7b^8c^9)\times (5a^{27}b^{16}c^8)

(vi) (x + 2)^2 . (x + 2)^4

(vii) (2m – 32n)^{3a-2b} \times  (2m – 3n)^{6a+10b}

(viii) x^{2a+b-c}.x^{2c+a-b}.x^{2b+c-a}

Sol :

(i) (x.x.x.x.x)(x.x)

x^{5} \cdot x^{2}

=x^{m} \cdot x^{n} \Rightarrow x^{m+n}

=\quad x^{5+2} \Rightarrow x^{-2}


(ii) -1 .(n \cdot n, n)(n \cdot n)

-1 n^{3} \cdot n^{2}

\because x^{m} \cdot x^{n}=x^{m+n}

-1 n^{3+2}

\Rightarrow-n^{5}


(iii) y^{8} \times y^{5} \times y^{2}

\Rightarrow y^{8+5+2}

\Rightarrow y^{15}


(iv) -x\left(-x^{5}\right)

\Rightarrow x \times x^{5}

\Rightarrow x^{1+5}

\Rightarrow x^{6}


(v) \left(3 a^{7} b^{8} c^{9}\right) \times 5\left(a^{27} b^{16} c^{8}\right)

3 \times a^{7} \times b^{8} \times c^{9} \times 5 \times c^{27} \times b^{16} \times c^{8}

x^{m} \cdot x^{n}=x^{m+n}

3 \times 5\left(a^{7} \times a^{27}\right)\left(b^{8} \times b^{16}\right)\left(c^{9} \times c^{8}\right)

3 \times 5 a^{7+27} \times b^{8+16} c^{9+8}

15 a^{34} b^{24} c^{17}


(vi) (2 m+3 n)^{3 n-2 b} \times(2 m-3 n)^{6 a+10 b}

\because x^{m} \cdot x^{n} \Rightarrow x^{m+n}

(2 m-3 n)^{3 a-2 b+6 a+10 b}

(2 m-3 n)^{(3 a+6 a-2 b+10 b)}

(2 m-3 n)^{9 a+0 b}


(vii) x^{2 a+b-c} \cdot x^{2 c+a-b} \cdot x^{2 b+c-a}

x^{m} x^{n} \cdot x^{0} \Rightarrow x^{m+n+0}

\Rightarrow x^{2 a+b-c+2c+a-b+2b+c-a}

\Rightarrow x^{2 a+2c+2 b}


Question 2

Write each expression in the simpler form:

(i) xy³

(ii) (-x)^5

(iii) (-2xy)^4

(iv) \frac{1}{2}

(v) (x^2)^5

(vi) (7^3)^8

(vii) (6a^2)^3

(viii) (-x^2y^3)^3

(ix) (p^2)^5 \times (p^3)^2

(x) 3(x^4y^3)^{10} \times 5(x^2y^2)^3

(xi) \left(\frac{c^3}{d^2}\right)^7

(xii) \left(\frac{3p^2}{4q^2}\right)^n

(xiii) \left(\frac{a^2b^2}{x^2y^3}\right)^m

Sol :

(i) (xy)^{3}

\left(xy\right)^{m}=x^{m} \cdot y^{m}

(x y)^{3}=x^{3} \cdot y^{3}



(ii) (-x)^{5}

⇒(-x)×(-x)×(-x)×(-x)×(-x)

⇒(-x)5



(iii) (-2 x y)^{4}

⇒(-2xy)×(-2xy)×(-2xy)×(-2xy)

⇒(-2xy)4

⇒(16x4y4)



(iv) \left(\frac{p}{q}\right)^{8}

\frac{p^{8}}{q^{8}}



(v) \left(x^{2}\right)^{5}

=x^{2 \times 5}=x^{10}



(vi) \left.7^{3}\right)^{8}

7^{3 \times 8}

7^{24}



(vii) \left(6 a^{2}\right)^{3}

\left(6 a^{2}\right) \times\left(6a^{2}\right) \times\left(6a^{2}\right)

\left(216a^{2+2+2}\right)

216a^6


(viii) \left(-x^{2} y^{3}\right)^{3}

\left(-x^{2} y^{3}\right) \times\left(-x^{2} y^{3}\right) \times\left(-x^{2} y^{3}\right)

\left(-x^{2+2+2} \cdot y^{3+3+3}\right)

-x^{6} y^{6}


(ix) \left(p^{2}\right)^{5} \times\left(p^{3}\right)^{2}

p^{2 \times 5+3 \times 2}

p^{10+6}

p^{16}


(x) 3\left(x^{4} y^{3}\right)^{10} \times 5\left(x^{2} y^{2}\right)^{3}

3\left(x^{4} y^{10}\cdot y^{3 \times 10}\right) \times 5\left(x^{2 \times 3} \cdot y^{2 \times 3}\right)

3 \times 5\left(x^{40} \cdot y^{30} \cdot x^{6} \cdot y^{6}\right)

15\left(x^{40+6} y^{30+6}\right)

15 \cdot\left(x^{46} y^{36}\right)

15 x^{46} y^{30}


(xi) \left(\frac{c^{3}}{d^{2}}\right)^{7}

\frac{\left(c^{3}\right)^{7}}{\left(d^{2}\right)^{7}}

\frac{c^{21}}{d ^{14}}


(xii) \left(\frac{3p^2}{4q^2}\right)^a

=\frac{3^{a} \cdot p^{2 a}}{4^{a} q^{2a}}


(xiii) \left(\frac{a^{2} b^{2}}{x^{2} y^{3}}\right)^{m}

=\frac{\left(a^{2} b^{2}\right)^{m}}{\left(x^{2} y^{3}\right)^{m}}

= \frac{a^{2 m} \times b^{2 m}}{x^{2 m} \times y^{3 m}}


Question 3

Find the quotient:

(i) x^6 + x^2

(ii) x^{2a} + x^4

(iii) \frac{p^5q^3}{p^3q^2}

(iv) (−8x^{27}y^{21})÷(−16x^6y^{17})

(v) (−8x^{27}y^{21})÷(−16x^6y^{17})

(vi) \frac{4pq^2(−5pq^3)}{10p^2q^2}

(vii) \frac{(−4ab^2)^2}{16ab}

(viii) \frac{x^{a−b}y^{c−d}}{x^{2b−a}y^c}

(ix) \frac{(m^{3n−9})^6}{m^{2n−4}}

(x) \left[\frac{(x^{2a−4})^2}{x^{a+5}}\right]^3

Sol :

(i) x^{6} \div x^{2}
x^{m} \div x^{n} \Rightarrow x^{m-n}
=x^{6} \div x^{2}
=x^{6-2}=x^{4}


(ii) x^{2} \div x^a

=x^{2a-a}

=x^{a}


(iii) \frac{p^{5} q^{3}}{p^{3} q^{2}}

=p^{5} q^{3} \div p^{3} q^{2}

=p^{5-2} q^{3-2}

=p^{2} q^1

=p^{2} q


(iv) \frac{-35 x^{10} y^{5}}{-7 x^{3} y^{3}}

=-35 x^{10} y^{5} \div\left(-7 x^{3} y^{3}\right)

=\frac{35^{5}}{7} x^{10-3} \cdot y^{5-3}

=5 x^{7} \cdot y^{2}


(v) -8 x^{27} y^{21} \div\left(-16 x^{6} y^{17}\right)

=\frac{-8}{-162} x^{27-6} y^{21-17}

=\frac{1}{2} x^{21} y^{4}


(vi) \frac{4 p q^{2}\left(-5 p q^{3}\right)}{10 p^{2} q^{2}}

=\frac{4 \times -5 .p^{1+1}.q^{2+3}}{10p^2q^2}

=\frac{-20p^2q^5}{10p^2q^2}

=-2 p^{2-2} q^{5-2}=-2p^0q^2

=-2q^2


(vii) \frac{\left(-4 a b^{2}\right)^{2}}{16 a b}

=\frac{16 a^{2} b^{2+2}}{16 a b}

=a^{2}.b^{4} \div a b=a^{2-1}.b^{4-1}

=a b^{3}


(viii) \frac{x^{a-b} y^{c-d}}{x^{2 b-a} y^{c}}

=x^{(a-b)(2 b-a)} y^{c-d-c}

=x^{a-b-2 b+a} y^{-d}

=x^{2 a-3 b} y^{-d}


(ix) \frac{\left(m^{3 n-9}\right)^{6}}{m^{2 n-4}}

=\frac{m^{3 n \times 6-9 \times 6}}{m^{2 n-4}}

=\frac{m^{18 n-54}}{m^{2 n-4}}

=m^{10 n-54-(2 n-4)}

=m^{18 n-54-2 n+4}


=m^{16n-50}


(x) \left[\frac{\left(x^{2a-4}\right)^{2}}{x^{a+5}}\right]^{3}

\Rightarrow\left(\frac{x^{2 \times 2 a-4 \times 2}}{x^{9+5}}\right)^{3}

\Rightarrow\left(\frac{x^{4 a-8}}{x^{a+5}}\right)^{3}

\Rightarrow\left(x^{4 a-8-(a+5)}\right)^{3}

\Rightarrow\left(x^{4 a-8-a-5}\right)^{3}

\Rightarrow\left(x^{3 a-13}\right)^{3}

\Rightarrow 3^{9a-39}

No comments:

Post a Comment

Contact Form

Name

Email *

Message *