Exercise 6(A)
Question 1
Write the products in the exponential form:
(i) (x . x . x . x. x) (x. x)
(ii) -1 (n . n. n) (n . n)
(iii) y8×y5×y2
(iv) –x(−x4)
(v) (3a7b8c9)×(5a27b16c8)
(vi) (x+2)2.(x+2)4
(vii) (2m–32n)3a−2b×(2m–3n)6a+10b
(viii) x2a+b−c.x2c+a−b.x2b+c−a
Sol :
(i) (x.x.x.x.x)(x.x)
x5⋅x2
=xm⋅xn⇒xm+n
=x5+2⇒x−2
(ii) −1.(n⋅n,n)(n⋅n)
−1n3⋅n2
∵xm⋅xn=xm+n
−1n3+2
⇒−n5
(iii) y8×y5×y2
⇒y8+5+2
⇒y15
(iv) −x(−x5)
⇒x×x5
⇒x1+5
⇒x6
(v) (3a7b8c9)×5(a27b16c8)
3×a7×b8×c9×5×c27×b16×c8
∵xm⋅xn=xm+n
3×5(a7×a27)(b8×b16)(c9×c8)
3×5a7+27×b8+16c9+8
15a34b24c17
(vi) (2m+3n)3n−2b×(2m−3n)6a+10b
∵xm⋅xn⇒xm+n
(2m−3n)3a−2b+6a+10b
(2m−3n)(3a+6a−2b+10b)
(2m−3n)9a+0b
(vii) x2a+b−c⋅x2c+a−b⋅x2b+c−a
∵xmxn⋅x0⇒xm+n+0
⇒x2a+b−c+2c+a−b+2b+c−a
⇒x2a+2c+2b
Question 2
Write each expression in the simpler form:
(i) xy³
(ii) (−x)5
(iii) (−2xy)4
(iv) 12
(v) (x2)5
(vi) (73)8
(vii) (6a2)3
(viii) (−x2y3)3
(ix) (p2)5×(p3)2
(x) 3(x4y3)10×5(x2y2)3
(xi) (c3d2)7
(xii) (3p24q2)n
(xiii) (a2b2x2y3)m
Sol :
∵(xy)m=xm⋅ym
(xy)3=x3⋅y3
(ii) (−x)5
⇒(-x)×(-x)×(-x)×(-x)×(-x)
⇒(-x)5
(iii) (−2xy)4
⇒(-2xy)×(-2xy)×(-2xy)×(-2xy)
⇒(-2xy)4
⇒(16x4y4)
(iv) (pq)8
⇒p8q8
(v) (x2)5
=x2×5=x10
(vi) 73)8
⇒73×8
⇒724
(vii) (6a2)3
⇒(6a2)×(6a2)×(6a2)
⇒(216a2+2+2)
⇒216a6
(viii) (−x2y3)3
⇒(−x2y3)×(−x2y3)×(−x2y3)
⇒(−x2+2+2⋅y3+3+3)
⇒−x6y6
(ix) (p2)5×(p3)2
⇒p2×5+3×2
⇒p10+6
⇒p16
(x) 3(x4y3)10×5(x2y2)3
⇒3(x4y10⋅y3×10)×5(x2×3⋅y2×3)
⇒3×5(x40⋅y30⋅x6⋅y6)
⇒15(x40+6y30+6)
⇒15⋅(x46y36)
⇒15x46y30
(xi) (c3d2)7
⇒(c3)7(d2)7
⇒c21d14
(xii) (3p24q2)a
=3a⋅p2a4aq2a
(xiii) (a2b2x2y3)m
=(a2b2)m(x2y3)m
=a2m×b2mx2m×y3m
Question 3
Find the quotient:
(i) x6+x2
(ii) x2a+x4
Sol :
=x2a−a
=xa
(iii) p5q3p3q2
=p5q3÷p3q2
=p5−2q3−2
=p2q1
=p2q
(iv) −35x10y5−7x3y3
=−35x10y5÷(−7x3y3)
=3557x10−3⋅y5−3
=5x7⋅y2
(v) −8x27y21÷(−16x6y17)
=−8−162x27−6y21−17
=12x21y4
(vi) 4pq2(−5pq3)10p2q2
=4×−5.p1+1.q2+310p2q2
=−20p2q510p2q2
=−2p2−2q5−2=−2p0q2
=−2q2
(vii) (−4ab2)216ab
=16a2b2+216ab
=a2.b4÷ab=a2−1.b4−1
=ab3
(viii) xa−byc−dx2b−ayc
=x(a−b)(2b−a)yc−d−c
=xa−b−2b+ay−d
=x2a−3by−d
(ix) (m3n−9)6m2n−4
=m3n×6−9×6m2n−4
=m18n−54m2n−4
=m10n−54−(2n−4)
=m18n−54−2n+4
=m16n−50
(x) [(x2a−4)2xa+5]3
⇒(x2×2a−4×2x9+5)3
⇒(x4a−8xa+5)3
⇒(x4a−8−(a+5))3
⇒(x4a−8−a−5)3
⇒(x3a−13)3
⇒39a−39
No comments:
Post a Comment