Exercise 6(A)
Question 1
Write the products in the exponential form:
(i) (x . x . x . x. x) (x. x)
(ii) -1 (n . n. n) (n . n)
(iii) y8×y5×y2
(iv) – x (- x^4)
(v) (3a^7b^8c^9)\times (5a^{27}b^{16}c^8)
(vi) (x + 2)^2 . (x + 2)^4
(vii) (2m – 32n)^{3a-2b} \times (2m – 3n)^{6a+10b}
(viii) x^{2a+b-c}.x^{2c+a-b}.x^{2b+c-a}
Sol :
(i) (x.x.x.x.x)(x.x)
x^{5} \cdot x^{2}
=x^{m} \cdot x^{n} \Rightarrow x^{m+n}
=\quad x^{5+2} \Rightarrow x^{-2}
(ii) -1 .(n \cdot n, n)(n \cdot n)
-1 n^{3} \cdot n^{2}
\because x^{m} \cdot x^{n}=x^{m+n}
-1 n^{3+2}
\Rightarrow-n^{5}
(iii) y^{8} \times y^{5} \times y^{2}
\Rightarrow y^{8+5+2}
\Rightarrow y^{15}
(iv) -x\left(-x^{5}\right)
\Rightarrow x \times x^{5}
\Rightarrow x^{1+5}
\Rightarrow x^{6}
(v) \left(3 a^{7} b^{8} c^{9}\right) \times 5\left(a^{27} b^{16} c^{8}\right)
3 \times a^{7} \times b^{8} \times c^{9} \times 5 \times c^{27} \times b^{16} \times c^{8}
∵x^{m} \cdot x^{n}=x^{m+n}
3 \times 5\left(a^{7} \times a^{27}\right)\left(b^{8} \times b^{16}\right)\left(c^{9} \times c^{8}\right)
3 \times 5 a^{7+27} \times b^{8+16} c^{9+8}
15 a^{34} b^{24} c^{17}
(vi) (2 m+3 n)^{3 n-2 b} \times(2 m-3 n)^{6 a+10 b}
\because x^{m} \cdot x^{n} \Rightarrow x^{m+n}
(2 m-3 n)^{3 a-2 b+6 a+10 b}
(2 m-3 n)^{(3 a+6 a-2 b+10 b)}
(2 m-3 n)^{9 a+0 b}
(vii) x^{2 a+b-c} \cdot x^{2 c+a-b} \cdot x^{2 b+c-a}
∵x^{m} x^{n} \cdot x^{0} \Rightarrow x^{m+n+0}
\Rightarrow x^{2 a+b-c+2c+a-b+2b+c-a}
\Rightarrow x^{2 a+2c+2 b}
Question 2
Write each expression in the simpler form:
(i) xy³
(ii) (-x)^5
(iii) (-2xy)^4
(iv) \frac{1}{2}
(v) (x^2)^5
(vi) (7^3)^8
(vii) (6a^2)^3
(viii) (-x^2y^3)^3
(ix) (p^2)^5 \times (p^3)^2
(x) 3(x^4y^3)^{10} \times 5(x^2y^2)^3
(xi) \left(\frac{c^3}{d^2}\right)^7
(xii) \left(\frac{3p^2}{4q^2}\right)^n
(xiii) \left(\frac{a^2b^2}{x^2y^3}\right)^m
Sol :
∵\left(xy\right)^{m}=x^{m} \cdot y^{m}
(x y)^{3}=x^{3} \cdot y^{3}
(ii) (-x)^{5}
⇒(-x)×(-x)×(-x)×(-x)×(-x)
⇒(-x)5
(iii) (-2 x y)^{4}
⇒(-2xy)×(-2xy)×(-2xy)×(-2xy)
⇒(-2xy)4
⇒(16x4y4)
(iv) \left(\frac{p}{q}\right)^{8}
⇒\frac{p^{8}}{q^{8}}
(v) \left(x^{2}\right)^{5}
=x^{2 \times 5}=x^{10}
(vi) \left.7^{3}\right)^{8}
⇒7^{3 \times 8}
⇒7^{24}
(vii) \left(6 a^{2}\right)^{3}
⇒\left(6 a^{2}\right) \times\left(6a^{2}\right) \times\left(6a^{2}\right)
⇒\left(216a^{2+2+2}\right)
⇒216a^6
(viii) \left(-x^{2} y^{3}\right)^{3}
⇒\left(-x^{2} y^{3}\right) \times\left(-x^{2} y^{3}\right) \times\left(-x^{2} y^{3}\right)
⇒\left(-x^{2+2+2} \cdot y^{3+3+3}\right)
⇒-x^{6} y^{6}
(ix) \left(p^{2}\right)^{5} \times\left(p^{3}\right)^{2}
⇒p^{2 \times 5+3 \times 2}
⇒p^{10+6}
⇒p^{16}
(x) 3\left(x^{4} y^{3}\right)^{10} \times 5\left(x^{2} y^{2}\right)^{3}
⇒3\left(x^{4} y^{10}\cdot y^{3 \times 10}\right) \times 5\left(x^{2 \times 3} \cdot y^{2 \times 3}\right)
⇒3 \times 5\left(x^{40} \cdot y^{30} \cdot x^{6} \cdot y^{6}\right)
⇒15\left(x^{40+6} y^{30+6}\right)
⇒15 \cdot\left(x^{46} y^{36}\right)
⇒15 x^{46} y^{30}
(xi) \left(\frac{c^{3}}{d^{2}}\right)^{7}
⇒\frac{\left(c^{3}\right)^{7}}{\left(d^{2}\right)^{7}}
⇒\frac{c^{21}}{d ^{14}}
(xii) \left(\frac{3p^2}{4q^2}\right)^a
=\frac{3^{a} \cdot p^{2 a}}{4^{a} q^{2a}}
(xiii) \left(\frac{a^{2} b^{2}}{x^{2} y^{3}}\right)^{m}
=\frac{\left(a^{2} b^{2}\right)^{m}}{\left(x^{2} y^{3}\right)^{m}}
= \frac{a^{2 m} \times b^{2 m}}{x^{2 m} \times y^{3 m}}
Question 3
Find the quotient:
(i) x^6 + x^2
(ii) x^{2a} + x^4
Sol :
=x^{2a-a}
=x^{a}
(iii) \frac{p^{5} q^{3}}{p^{3} q^{2}}
=p^{5} q^{3} \div p^{3} q^{2}
=p^{5-2} q^{3-2}
=p^{2} q^1
=p^{2} q
(iv) \frac{-35 x^{10} y^{5}}{-7 x^{3} y^{3}}
=-35 x^{10} y^{5} \div\left(-7 x^{3} y^{3}\right)
=\frac{35^{5}}{7} x^{10-3} \cdot y^{5-3}
=5 x^{7} \cdot y^{2}
(v) -8 x^{27} y^{21} \div\left(-16 x^{6} y^{17}\right)
=\frac{-8}{-162} x^{27-6} y^{21-17}
=\frac{1}{2} x^{21} y^{4}
(vi) \frac{4 p q^{2}\left(-5 p q^{3}\right)}{10 p^{2} q^{2}}
=\frac{4 \times -5 .p^{1+1}.q^{2+3}}{10p^2q^2}
=\frac{-20p^2q^5}{10p^2q^2}
=-2 p^{2-2} q^{5-2}=-2p^0q^2
=-2q^2
(vii) \frac{\left(-4 a b^{2}\right)^{2}}{16 a b}
=\frac{16 a^{2} b^{2+2}}{16 a b}
=a^{2}.b^{4} \div a b=a^{2-1}.b^{4-1}
=a b^{3}
(viii) \frac{x^{a-b} y^{c-d}}{x^{2 b-a} y^{c}}
=x^{(a-b)(2 b-a)} y^{c-d-c}
=x^{a-b-2 b+a} y^{-d}
=x^{2 a-3 b} y^{-d}
(ix) \frac{\left(m^{3 n-9}\right)^{6}}{m^{2 n-4}}
=\frac{m^{3 n \times 6-9 \times 6}}{m^{2 n-4}}
=\frac{m^{18 n-54}}{m^{2 n-4}}
=m^{10 n-54-(2 n-4)}
=m^{18 n-54-2 n+4}
=m^{16n-50}
(x) \left[\frac{\left(x^{2a-4}\right)^{2}}{x^{a+5}}\right]^{3}
\Rightarrow\left(\frac{x^{2 \times 2 a-4 \times 2}}{x^{9+5}}\right)^{3}
\Rightarrow\left(\frac{x^{4 a-8}}{x^{a+5}}\right)^{3}
\Rightarrow\left(x^{4 a-8-(a+5)}\right)^{3}
\Rightarrow\left(x^{4 a-8-a-5}\right)^{3}
\Rightarrow\left(x^{3 a-13}\right)^{3}
\Rightarrow 3^{9a-39}
No comments:
Post a Comment