Exercise 4(H)
Question 1
a³ + 1
Sol :
$=x^{3}+1$
$=(x)^{3}+(1)^{3}$
$=(x+1)\left(x^{2}-x+1\right)$
Question 2
x³ + 8
Sol :
Question 3
8x³ + 1
Sol :
Question 4
x³ – 27
Sol :
Question 5
a³ – 8
Sol :
$=a^{3}-8$
$=(a)^{3}-(2)^{3}$
$=(a-2)\left[(a)^{2}+a \times 2+(2)^{2}\right]$
$=(a-2)\left(a^{2}+2 a+4\right)$
Question 6
27m³ – 8
Sol :
Question 7
x³+ 64
Sol :
Question 8
$8 a^{3}-b^{6}$
Sol :
Question 9
$x^{6}+8 b^{3}$
Sol :
Question 10
8a³ + 21b³
Sol :
Question 11
27x³ – 8y³
Sol :
Question 12
128x³ + 2
Sol :
Question 13
Factorise :
$8x^3– \frac{1}{27}y^3$
Sol :
Question 14
$343 x^{3} y+512 y^{4}$
Sol :
$=343 x^{3} y+512 y^{4}$
$=y\left(343 x^{3}+512 y^{3}\right)$
$=y\left[(7 x)^{3}+(8 y)^{3}\right]$
$=y\left[(7 x+8 y)\left[(7 x)^{2}-7 x \times 8 y+(8 y)^{2}\right]\right]$
$=y(7 x+8 y)\left(49 x^{2}-56 x y+64 y^{2}\right)$
Question 15
(2a + b)³ + (a + 2b)³
Sol :
$=(x+y)\left(x^{2}-x y+y^{2}\right)$
$=(2 a+b)^{3}+(a+2 b)^{3}=(2 a+b+2 b)$
$=\left[(2 a+b)^{2}-(2 a+b)(a+2 b)+(a+2 b)^{2}\right]$
Question 16
27 (m + 2n)³ + (m – 6n)³
Sol :
$=(3 a+b)\left[(3 a)^{2}-3 a b+(b)^{2}\right]$
$=(3 a+b)\left(9 a^{2}-3 a b+b^{2}\right)$
Question 17
8 (a + b)³ – 21c³
Sol :
Question 18
$x^{6}-1$
Sol :
$=x^{6}-1$
$=\left(x^{3}\right)^{2}-(1)^{2}$
$=\left(x^{3}+1\right)\left(x^{3}-1\right)$
$=\left[(x)^{3}+(1)^{2}\right]\left[(x)^{3}-(1)^{3}\right]$
$=(x+1)\left(x^{2}-x+1\right)(x-1)\left(x^{2}+x+1\right)$
$=(x+1)(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$
Question 19
Sol :
$=\left(8 a^{3}+b^{3}\right)\left(8 a^{3}-b^{3}\right)$
$=\left[(2 a)^{3}+(b)^{3} ]\left[(2 a)^{3}-(b)^{3}\right]\right.$
$=(2 a+b)\left[(2 a)^{2}-2 a \times b+(b)^{2}\right](2 a-b)\left[(2 a)^{2}+2 a \times b+b^{2}\right]$
$=(2 a+b)\left(4 a^{2}-2 a b+b^{2}\right)(2 a-b)\left(4 a^{2}+2 a b+b^{2}\right)$
$=(2 a+b)(2 a-b)\left(4 a^{2}+2 a b+b^{2}\right)\left(4 a^{2}-2 a b+b^{2}\right)$
Question 20
a³ – b³ + 4 (a – b)
Sol :
$\begin{aligned} =&a^{3}-b^{3}+4(a-b) \\=&(a-b)\left(a^{2}+a b+b^{2}\right)+u(a-b) \\=&(a-b)\left(a^{2}+a b+b^{3}+4\right) \end{aligned}$
Question 21
$x^{3}-\frac{1}{x^{3}}-6 x+\frac{6}{x}$
Sol :
$\begin{aligned} =& x^{3}-\frac{1}{x^{3}}-6 x+\frac{6}{x} \\=&\left(x-\frac{1}{x}\right)\left(x^{2}+1+\frac{1}{x^{2}}\right)-6\left(x-\frac{1}{x}\right) \\=&\left(x-\frac{1}{x}\right)\left(x^{2}+1+\frac{1}{x^{2}}-6\right) \\=&\left(x-\frac{1}{x}\right)\left(x^{2}-5+\frac{1}{x^{2}}\right) \end{aligned}$
Question 22
64a³ + 125b³ + 12a²b + 15ab²
Sol :
$\begin{aligned} = &64 a^{3}+125 b^{3}+12 a^{2} b+15 a b^{2} \\=&\left[(4a)^{3}+(5 b)^{3}\right]+3 a b(4 a+5 b) \\=&(4 a+5 b)\left[(4 a)^{2}-4 a \times 5 b +(5 b)^{2}\right]+3 a b(4a+5b) \end{aligned}$
$=(4 a+5 b)\left(16 a^{2}-20 a b+25 b^{2}\right)+3 a b(4 a+5 b)$
$=(4 a+5 b)\left(16 a^{2}-20 a b+25 b^{2}+3 a b\right)$
$=(4 a+s b)\left(16 a^{2}-17 a b+25 b^{2}\right)$
Question 23
375 (a – b)³+ 3
Sol :
$=375(a-b)^{3}+3$
$=3\left[125(a-b)^{3}+1\right]$
$=3\left[\left\{5(a-b) y^{3}+(1)^{3}\right]\right.$
$=3\left[\{5(a-b)+1\}\left\{(5(a-b)\}^{2}-5\left(a-b \times 1+(1)^{2}\right]\right.\right.$
$=3\left[(5 a-5 b+1)\left(25\left(a^{2}+b^{2}-2 a b\right)-5 a+5 b+1\right)\right]$
$=3(5 a-5 b+1)\left(25 b^{2}-50 a b-5 a+5 b+1\right)$
Question 24
$a^{4}+b^{4}=a^{2} b^{2}$ , Show that $a^{6}+b^{6}=0$
Sol :
$a^{4}+b^{4}=a^{2} b^{2}$
L.H.S
$=a^{6}+b^{6}=\left(a^{2}\right)^{3}+\left(b^{2}\right)^{3}$
$=\left(a^{2}+b^{2}\right)\left[a^{4}-a^{2} b^{2}+b^{4}\right]$
$=\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}-a^{2} b^{2}\right)$
$=\left(a^{2}+b^{2}\right)\left(a^{2} b^{2}-a^{2} b^{2}\right)$
$a^{4}+b^{4}=a^{2} b^{2}$ already given
$=\left(a^{2}+b^{2}\right) \times 0=0$
R.H.S
L.H.S=R.H.S
Nice
ReplyDelete