Exercise 4(F)
Question 1
a² + 5a + 6
Sol :
$\begin{aligned} & a^{2}+5 a+6 \\=& a^{2}+2 a+3 a+6\end{aligned}$
=a(a+2)+3(a+2)
=(a+2)(a+3)
Question 2
a² + 6a + 8
Sol :
$a^{2}+6 a+8$
$=a^{2}+2 a+4 a+8$
=a(a+2)+4(a+2)
=(a+4)(a+2)
Question 3
p² + 10p + 16
Sol :
$=p^{2}+10 p+16$
$=p^{2}+2 p+8 p+16$
=p(p+2)+8(p+2)
=(p+2)(p+8)
Question 4
a² + 13a + 42
Sol :
$=a^{2}+13 a+42$
$=a^{2}+7 a+6 a+42$
=a(a+7)+6(a+7)
=(a+6)(a+7)
Question 5
a² + 25a – 54
Sol :
$=a^{2}+25 a-54$
$=a^{2}+27 a-2 a-54$
=a(a+27)-2(a+27)
=(a+27)(a-2)
Question 6
x² + 5x – 176
Sol :
Question 7
y² – 18y + 65
Sol :
Question 8
m² – 29m + 204
Sol :
Question 9
b² – 2b – 48
Sol :
$\begin{aligned} & b^{2}-2 b-48 \\=& b^{2}-8 b+6 b-48 \\=& b(b-8)+6(b-8) \\=&(b+6)(b-8) \end{aligned}$
Question 10
x² – 11x – 102
Sol :
Question 11
3 – 4t + t²
Sol :
Question 12
51 – 20k + k²
Sol :
Question 13
2x² – 10x + 12
Sol :
Question 14
3x³ – 33x² + 84x
Sol :
Question 15
5y² – 45y – 110
Sol :
Question 16
$x^{4}-13 x^{2}+36$
Sol :
Question 17
x² + 3xy – 88y²
Sol :
$=x^{2}+3 x y-88 y^{2}$
$=x^{2}+11 x y-8 x y-88 y^{2}$
$=x(x+11 y)-8 y(x+11 y)$
$=(x+11 y)(x-8 y)$
Question 18
$x^{4}-x^{2} y^{2}-72 y^{4}$
Sol :
$\begin{aligned} & x^{4}-x^{2} y^{2}-72 y^{4} \\=& x^{4}-9 x^{2} y^{2}+8 x^{2} y^{2}-72 y^{4} \\=& x^{2}\left(x^{2}-9 y^{2}\right)+8 y^{2}\left(x^{2}-9 y^{2}\right) \\=&\left(x^{2}-9 y^{2}\right)\left(x^{2}+8 y^{2}\right) \\=&\left(x^{2}+8 y^{2}\right)\left[(x)^{2}-(3 y)^{2}\right] \\=&\left(x^{2}+8 y^{2}\right)(x-3 y)(x+3 y) \end{aligned}$
Question 19
a³b³ – 9a²b² + 20ab
Sol :
$\begin{aligned} \text { 9. } & a^{3} b^{3}-9 a^{2} b^{2}+20 a b \\ & a^{3} b^{3}-9 a^{2} b^{2}+20 a b \\=& a b\left[a^{2} b^{2}-9 a b+20\right] \\=& a b\left[a^{2} b^{2}-4 a b-5 a b+20\right] \\=& a b[a b(a b-u)-s(a b-4)] \\=& a b(a b-4)(a b-5) \end{aligned}$
Question 20
(x² + x)² + 4 (x² + x) – 21
Sol :
$\left(x^{2}+x\right)^{2}+4\left(x^{2}+x\right)-21$
Let $x^{2}+x=a$, then,
$=a^{2}+4 a-21$
$=a^{2}+7 a-3 a-21$
$=a(a-7)-3(a+7)$
$=(a-3)(a+7)$
$=\left(x^{2}+x-3\right)\left(x^{2}+x+7\right)$
No comments:
Post a Comment