Exercise 4(E)
Question 1
7x² – 7
Sol :
=7x2−7
=7(x2−1)
=7[(x)2−(1)2]
=7(x+1)(x−1)
Question 2
8 – 50y²z²
Sol :
Question 3
ab² – ac²
Sol :
=ab2−ac2
=a[(b)2−(c)2]
=a(b-c)(b+c)
Question 4
36x³ – x
Sol :
Question 5
x (x² – 1) + 7 (x² – 1)
Sol :
x(x2−1)+7(x2−1)
=(x2−1)(x2+7)
=[(x)2−(1)2](x+7)
=(x+1)(x-1)(x+7)
Question 6
t² (t – 3)² – (t – 3)²
Sol :
Question 7
5c² (c + 2)² – 45 (c + 2)²
Sol :
=5(c+2)2[c2−9]
=5(c+2)2[(c)2−(3)2]
=5(c+2)2(c+3)(c−3)
Question 8
(a + b)² – 1
Sol :
=(a+b)2−1
=(a+b)2−(1)2
=(a+b+h)(a+b-1)
Question 9
1 – (x – y)²
Sol :
=1−(x−y)2=(1)2−(x−y)2=(1+x−y)(1−x−y)
Question 10
25a² – 16 (x – y)²
Sol :
Question 11
20 – 45 (m + n)²
Sol :
Question 12
x4−y4
Sol :
=x4−y4
(x2)2−(y2)2
(x2+y2)⋅(x2−y2)
Question 13
x4−625
Sol :
Question 14
xy5–yx5
Sol :
=xy5−yx5
=xy[y4−x4]
=xy[(y2)2−(x2)2]
=xy(y2−x2)(y2+x2)
=xy[(y)2−(x2)](y2+x2)
=xy(y+x)(y−x)(y2+x2)
Question 15
81x4−2.56y4
Sol :
=81x4−2.56y4=(9x2)2−(16y2)2=(9x2−16y2)(9x2+16y2)=[(3x)2−(4y)2](9x2+16y2)
=(3x+4y)(3x−4y)(9x2+16y2)
Question 16
a² + ac + bc – b²
Sol :
=(a+b)(a-b)+c(a+b)
=(a+b)(a-b+c)
Question 17
4a² – b² + 2a + b
Sol :
=(2 a+b)(2 a-b)+1(2 a+b)
=(2 a+b)(2 a-b+1)
Question 18
x² + 3x – y² – 3y
Sol :
=(x+y)(x-y)+3(x-y)
=(x+y)(x+y+3)
Question 19
a² + b² – 2ab – 4c²
Sol :
Question 20
9x² – 6xy + y² – z²
Sol :
=9x2−6xy+y2−z2=[(3x)2−2×3x×y+(y)2]−(2)2=(3x−y)2−(2)2
Question 21
x² – 1 – 2a – a²
Sol :
=x2−1−2a−a2=x2−(1+2a+a2)=(x)2−(1+a)2=(x+1+a)(x−1−a)
Question 22
4a² + b² – c² + 4ab
Sol :
Question 23
x³ + 2x² – x – 2
Sol :
Question 24
1 + 2ab – (a² + b²)
Sol :
=x+2ab−(a2+b2)
=1+2ab⋅a2−b2
=1−(a2+b2−2ab)
=(1)2−(a−b)2
=(1+a−b)(1−a+b)
Question 25
x2+1x2−11
Sol :
Question 26
Sol :
Question 27
Factorise the following :
(i) 4a² – b² + 2a + b
(ii) 9x² – 4 (y + 2x)²
(iii) 9 (x + y)² – x²
Sol :
Question 28
Factorise : x³ – 3x² – x + 3
Sol :
Question 29
Factorise :
(a² – b²) (c² – d²) – 4abcd
Sol :
Question 30
Express (x² + 8x + 15) (x² – 8x + 15) as a difference of two squares.
Sol :
No comments:
Post a Comment