SChand CLASS 9 Chapter 3 Expansions TEST

 TEST

Question 1

The coefficient of x in the product (2 – 3x) (5 – 2x) is

(a) 19

(b) – 19

(c) 15

(d) 6

Sol :

=(2-3x)(5-2x)

term x has -4x-15x=-19x


Question 2

If 3x4 + kx² – 8 = (3x² – 2) (x² + 4) for all x, then the value of k is:

(a) – 2

(b) 12

(c) 10

(d) – 8

Sol :

3x4+kx28=(3x22)(x2+4)
3x4+kx28=3x4+12x22x28
3x4+kx28=3x4+10x28
k=10

Question 3

The coefficient of x² in (3x + x³)(x+1x) is

(a) 3

(b) 1

(c) 4

(d) 2

Sol :

(3x+x3)(x+1x)
3x2+3+x4+x2=4x2+x4+3
x2=4

Question 4

If a = 3 + b, prove that a³ – b³ – 9ab = 27.

Sol :

a=3+b
a-b=3
cubing both sides
(ab)3=(3)3

a3b33ab(ab)=(9)3

a3b33ab×3=27

a3b39ab=27


Question 5

Simplify:

(a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)

Sol :

(a2b2)3+(b2c2)3+(c2a2)3(ab)3+(bc)3+(ca)3

3(a2b2)(b2c2)(c2a2)3(ab)(bc)(ca)

(ab)(a+b)(bc)(b+c)(ca)(c+a)(ab)(bc)(ca)

(a+b)(b+c)(c+a)


Question 6

If a+1(a+2)=0 , then the value of (a+2)3+1(a+2)3 is

(a) 6

(b) 4

(c) 3

(d) 2

Sol :

a+1(a+2)=0

a×(a+2)+1a+2)0
a2+2a+1=0
(a+1)=0
a=-1

Putting value of a in (a+2)3+1(a+2)2
(1+2)3+1(1+2)3
(1)3+1(1)3
=1+1=2

Question 7

If a+1a+2=0  , then the value of a (a371a100)

a) 0

(b) – 2

(c) 1

(d) 2

Sol :

a+1a+20
a2+1+2a0
(a1)2=0
(a1)0
a=1

Putting the value of a in a371a100
(1)371(1)100 
111
-1-1=-2

Question 8

If (a – 1)² + (b + 2)² + (c + 1)² = 0 then the value of 2a – 3b + 7c is

(a) 12

(b) 3

(c) – 11

(d) 1

Sol :

(a1)2+(b+2)2+(c+1)20
(a1)20
a=1

(b+2)2=0
b+2=0
b=-2

(c+1)20
c+1=0
c=-1

Now putting the value of a,b,c in 2a-3b+7c
=2×1-3×-2+7×-1
=2+6-7=1

Question 9

If ax + by = 3, bx – ay = 4 and x² + y² = 1, then the value of a² + b² is

(a) – 1

(b) – 25

(c) 1

(d) 25

Sol :

ax+by=3...(i)
bx-ay=4....(ii)
x2+y21...(iii)

Squaring equation (i) and (ii) and adding

(ax+by)2+(bxay)232+42
a2x2+b2y2+2abxy+b2x2+a2y22abxy9+16
(a2+b2)x2+(a2+b2)y225
(a2+b2)(x2+y2)25
(a2+b2)×125 from equation (3)
a2+b225


Question 10

If p + q = 10 and pq = 5, then the numerical value of pq+qp will be:

(a) 22

(b) 18

(c) 16

(d) 20

Sol :

p+q⇒10 , p.q⇒5
p+q=10

Squaring both sides

(p+q)2102

p2+q2+2pq100

p2+q2+2×5100

p2+q210010

p2+q290


Now pq+qpp2+q2pq
9050
=1.8

No comments:

Post a Comment

Contact Form

Name

Email *

Message *