Exercise 3(B)
Question 1
Find the value of:
(i) a² + b² when a + b = 9, ab = 20
(ii) p² + q² if p – q = 6 and p + q = 14
(iii) mn if m + n = 8, m – n = 2
(iv) x2+1x2 and x4+1x4 if x+1x=3
(v) x–1x and x2–1x2 if x+1x=√5
Sol :
(i) a+b=9 , ab=20
⇒(a2+b2)=(a+b)2−2ab
⇒(9)2−2×20
⇒81-40
⇒41
(ii) p-q=6 , p+q=14
2(p2+q2)⇒(p+q)2+(p−q)2
⇒(14)2+(6)2
⇒196+36
⇒232
∴p2+q2=2322
=116
(iii) m+n=8 , m-n=2
4mn⇒(m+n)2−(m−n)2=(812−(2)2
=64-4=60
∴mn=604=15
(iv) x+1x=3
Squaring both sides
(x−1x)2=(3)2
x2+(1x)2+2×x×1y⇒9
x2+1x2+2⇒9
x2+1x2⇒9−2
x2+1x2⇒7
Again , Squaring both sides
(x2+1x2)2=(7)2
x4+1x4+2×x2×1x2⇒49
x4+1x4+2⇒49
x4+1x4=47
(v) x+1x⇒√5
Squaring both sides
(x+1x)2=(√5)2
x2+(1x)2+2×x×1x⇒5
x2+1x2+2⇒5
x2+1x2⇒3
Now , (x−1x)2⇒x2+1x2−2
=3-2=1
(x−1x)2⇒(±1)2
x−1x=±1
x2−1x2=(x+1x)(x−1x)
x2−1x2=15×(±1)
x2−1x2⇒±√5
Question 2
(i) a² + b² + c² if a + b + c = 17 and ab + bc + ca = 30.
(ii) ab + be + ca, a + b + c = 15 and a² + b² + c² = 77
(iii) a + b + c if a² + b² + c² = 50 and ab + bc + ca =47.
Sol :
Squaring both sides
(a+b+c)2⇒(17)2
a2+b2+c2+2(ab+bc+ca)⇒289
a2+b2+c2+2×30⇒289 [∵ab+bc+ca=30]
a2+b2+c2⇒289−60
a2+b2+c2=229
(ii) a+b+c=15
a2+b2+c2=77
a+b+c=15
Squaring both sides
(a+b+c)2=(15)2
a2+b2+c2+2(ab+bc+ca)=525
77+2(ab+bc+ca)=925
2(ab+bc+ca)=25-77
2(ab+bc+ca)=148
ab+bc+ca=1482
ab+bc+ca=74
(iii) a2+b2+c2=50 and ab+bc+ca=47
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
=50+2×47
=50+94=144
(a+b+c)2=(±12)2
a+b+c=土12
Question 3
(i) 8x³ + 84x²y + 294xy² + 343y³ if x = 1, y = 2
(ii) 27x³ – 27x²y + 9xy2 – y³ if x = 2, y = 1
Sol :
Question 4
(i) a³ + b³ if a + b = 3 and ab = 2
Sol :
⇒(x−1x)2=16
⇒(x−1x)2=(±4)2
and
x3−1x3⇒(x+1x)3+3(x−1x)
(−4)3+3×(−4)
=-64-12=-76
∴x3−1x3⇒±76
(iv) x2+125x2=835⇒435
x2+(15x)2=435
Adding both sides 25 [2×x+15x→25)
x2+1(5x)2+25=435+25
⇒(x+157)2=43+25
⇒(x+15x)2⇒455
⇒(x+15x)2⇒9
7(x+15x)x=(±3)2
x+15x=±3
When x+15x⇒3
then x3+1125x3=(x+15x)3−3×x+15x(x+15x)
⇒(3)3−35×3
⇒27−95
⇒135−95
⇒1265⇒2515
When x+15x⇒−3
then
x3+1125x3=(x+15x)3−3x×15x(x+15x)
=(−3)3−35×(−3)
=−27+95
=−135+95
=−1265
=−2515
Hence , x3+125x3=±2515
Question 5
Evaluate:
(i) 102 × 98
(ii) 1003² – 997²
(iii) (10)³ – (5)³ – (5)³
Sol :
(i) 10² × 98
= (100 + 2) (100-2) {∵ {a + b)(a – b) = a² – b²)}
= (100)² – (2)²
= 10000 – 4
= 9996
(ii) (1003)² – (997)²
= (1003 + 997) (1003 – 997) {∵ a² – b² = (a + b) (a – b)}
= 2000 × 6 = 12000
(iii) (10)³ – (5)³ – (5)³ = (10)³ + (- 5)³ + (- 5)³
Let 10 = a, – 5 = b, – 5 = c and a + b + c – 10 – 5 – 5 = 0
∵ a + b + c = 0. then a³ + b³ + c³ = 3abc
⇒ (10)³ – (5)³ – (5)³ = 3 × 10 × (- 5) (- 5) = 750
No comments:
Post a Comment