SChand CLASS 9 Chapter 3 Expansions Exercise 3(B)

 Exercise 3(B)

Question 1

Find the value of:

(i) a² + b² when a + b = 9, ab = 20

(ii) p² + q² if p – q = 6 and p + q = 14

(iii) mn if m + n = 8, m – n = 2

(iv) x2+1x2 and x4+1x4 if x+1x=3

(v) x1x and x21x2 if x+1x=5

Sol :

(i) a+b=9  , ab=20

(a2+b2)=(a+b)22ab

(9)22×20

⇒81-40

⇒41


(ii) p-q=6 , p+q=14

2(p2+q2)(p+q)2+(pq)2

(14)2+(6)2

⇒196+36

⇒232

p2+q2=2322

=116


(iii) m+n=8 , m-n=2

4mn(m+n)2(mn)2=(812(2)2

=64-4=60

∴mn=604=15


(iv) x+1x=3

Squaring both sides

(x1x)2=(3)2

x2+(1x)2+2×x×1y9

x2+1x2+29

x2+1x292

x2+1x27

Again , Squaring both sides

(x2+1x2)2=(7)2

x4+1x4+2×x2×1x249

x4+1x4+249

x4+1x4=47


(v) x+1x5

Squaring both sides

(x+1x)2=(5)2

x2+(1x)2+2×x×1x5

x2+1x2+25

x2+1x23


Now , (x1x)2x2+1x22

=3-2=1

(x1x)2(±1)2

x1x=±1

x21x2=(x+1x)(x1x)

x21x2=15×(±1)

x21x2±5


Question 2

(i) a² + b² + c² if a + b + c = 17 and ab + bc + ca = 30.

(ii) ab + be + ca, a + b + c = 15 and a² + b² + c² = 77

(iii) a + b + c if a² + b² + c² = 50 and ab + bc + ca =47.

Sol :

(i) a+b+c=17

Squaring both sides

(a+b+c)2(17)2

a2+b2+c2+2(ab+bc+ca)289

a2+b2+c2+2×30289  [∵ab+bc+ca=30]

a2+b2+c228960

a2+b2+c2=229


(ii) a+b+c=15

a2+b2+c2=77

a+b+c=15

Squaring both sides

(a+b+c)2=(15)2

a2+b2+c2+2(ab+bc+ca)=525

77+2(ab+bc+ca)=925

2(ab+bc+ca)=25-77

2(ab+bc+ca)=148

ab+bc+ca=1482

ab+bc+ca=74


(iii) a2+b2+c2=50 and ab+bc+ca=47

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)

=50+2×47

=50+94=144

(a+b+c)2=(±12)2

a+b+c=土12


Question 3

(i) 8x³ + 84x²y + 294xy² + 343y³ if x = 1, y = 2

(ii) 27x³ – 27x²y + 9xy2 – y³ if x = 2, y = 1

Sol :

(i) 8x3+84x2y+294xy2+343y3 if x=1, y=2
8x3+84x2y+294xy2+343y3
(2x)3+3(2x)2×7y+3×2x×(7y)2+(7y)3
(2x)3+3(2x)2×7y+3×2x×(7y)2+(7y)3
(2x+7y)3=(2×1+7×2)3
(2+14)3
(16)3
=4096

(ii) x=2 , y=1
27x327x2y+9xy2y3
(3x)33(3x)2y+3(3x)y2(y)3
(3xy)3=(3×21)3
(61)3
(5)3=125

Question 4

(i) a³ + b³ if a + b = 3 and ab = 2

(ii) x3+1x3 if (x+1x)=3

(iii) x31x3 if (x2+1x2)=18

(iv) x3+1125x3 if x2+125x2=835

Sol :

(i) a+b=3  ab=2
a3+b3=(a+b)33ab(ab)
=(3)33×2×3
=27-18=9

(ii) x+1x=3
x3+1x3(x+1x)33(x+1x)
(3)33(3)
=27-9=18


(iii) x2+1x218
(-2) From both sides
x2+1x22182

(x1x)2=16

(x1x)2=(±4)2

x1x=±4

Now x31x3=(x1x)3+3(x1x)
when x1x4
(4)3+3×4
⇒64+12=76
and x31x3(x+1x)3+3(x1x)
(4)3+3×(4)
-64-12=-76
x31x3±76

and 

x31x3(x+1x)3+3(x1x)

(4)3+3×(4)

=-64-12=-76

x31x3±76


(iv) x2+125x2=835435

x2+(15x)2=435

Adding both sides 25 [2×x+15x25)

x2+1(5x)2+25=435+25

(x+157)2=43+25

(x+15x)2455

(x+15x)29

7(x+15x)x=(±3)2

x+15x=±3


When x+15x3

then x3+1125x3=(x+15x)33×x+15x(x+15x)

(3)335×3

2795

13595

12652515

When  x+15x3

then 

x3+1125x3=(x+15x)33x×15x(x+15x)

=(3)335×(3)

=27+95

=135+95

=1265

=2515

Hence , x3+125x3=±2515


Question 5

Evaluate:

(i) 102 × 98

(ii) 1003² – 997²

(iii) (10)³ – (5)³ – (5)³

Sol :

(i) 10² × 98

= (100 + 2) (100-2) {∵ {a + b)(a – b) = a² – b²)}

= (100)² – (2)²

= 10000 – 4

= 9996


(ii) (1003)² – (997)²

= (1003 + 997) (1003 – 997) {∵ a² – b² = (a + b) (a – b)}

= 2000 × 6 = 12000


(iii) (10)³ – (5)³ – (5)³ = (10)³ + (- 5)³ + (- 5)³

Let 10 = a, – 5 = b, – 5 = c and a + b + c – 10 – 5 – 5 = 0

∵ a + b + c = 0. then a³ + b³ + c³ = 3abc

⇒ (10)³ – (5)³ – (5)³ = 3 × 10 × (- 5) (- 5) = 750


No comments:

Post a Comment

Contact Form

Name

Email *

Message *