Exercise 3(B)
Question 1
Find the value of:
(i) a² + b² when a + b = 9, ab = 20
(ii) p² + q² if p – q = 6 and p + q = 14
(iii) mn if m + n = 8, m – n = 2
(iv) $x^2 + \frac{1}{x^2}$ and $x^4 + \frac{1}{x^4}$ if $x + \frac{1}{x}= 3$
(v) $x – \frac{1}{x}$ and $x^2 – \frac{1}{x^2}$ if $x + \frac{1}{x} = \sqrt{5}$
Sol :
(i) a+b=9 , ab=20
$\Rightarrow\left(a^{2}+b^{2}\right)=(a+b)^{2}-2 a b$
$\Rightarrow \quad(9)^{2}-2 \times 20$
⇒81-40
⇒41
(ii) p-q=6 , p+q=14
$2\left(p^{2}+q^{2}\right) \Rightarrow(p+q)^{2}+(p-q)^{2}$
⇒$(14)^{2}+(6)^{2}$
⇒196+36
⇒232
∴$p^{2}+q^{2}= \frac{232}{2}$
=116
(iii) m+n=8 , m-n=2
$\begin{aligned} 4 m n & \Rightarrow(m+n)^{2}-(m-n)^{2} \\ &=\left(81^{2}-(2)^{2}\right.\end{aligned}$
=64-4=60
∴mn$=\frac{60}{4}=15$
(iv) $x+\frac{1}{x}=3$
Squaring both sides
$\left(x-\frac{1}{x}\right)^{2}=(3)^{2}$
$x^{2}+\left(\frac{1}{x}\right)^{2}+2 \times x \times \frac{1}{y} \Rightarrow 9$
$x^{2}+\frac{1}{x^{2}}+2 \Rightarrow 9$
$x^{2}+\frac{1}{x^{2}} \Rightarrow 9-2$
$x^{2}+\frac{1}{x^{2}} \Rightarrow 7$
Again , Squaring both sides
$\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=(7)^{2}$
$x^{4}+\frac{1}{x^{4}}+2 \times x^{2} \times \frac{1}{x^{2}} \Rightarrow 49$
$x^{4}+\frac{1}{x^{4}}+2 \Rightarrow 49$
$x^{4}+\frac{1}{x^{4}}=47$
(v) $x+\frac{1}{x} \Rightarrow \sqrt{5}$
Squaring both sides
$\left(x+\frac{1}{x}\right)^{2}=(\sqrt{5})^{2}$
$x^{2}+\left(\frac{1}{x}\right)^{2}+2 \times x \times \frac{1}{x} \Rightarrow 5$
$x^{2}+\frac{1}{x^{2}}+2 \Rightarrow 5$
$x^{2}+\frac{1}{x^{2}} \Rightarrow 3$
Now , $\left(x-\frac{1}{x}\right)^{2} \Rightarrow x^{2}+\frac{1}{x^{2}}-2$
=3-2=1
$\left(x-\frac{1}{x}\right)^{2} \Rightarrow(\pm 1)^{2}$
$x-\frac{1}{x}=\pm 1$
$x^{2}-\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)$
$x^{2}-\frac{1}{x^{2}}=15 \times(\pm 1)$
$x^{2}-\frac{1}{x^{2}} \Rightarrow \pm \sqrt{5}$
Question 2
(i) a² + b² + c² if a + b + c = 17 and ab + bc + ca = 30.
(ii) ab + be + ca, a + b + c = 15 and a² + b² + c² = 77
(iii) a + b + c if a² + b² + c² = 50 and ab + bc + ca =47.
Sol :
Squaring both sides
$(a+b+c)^{2} \Rightarrow(17)^{2}$
$a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \Rightarrow 289$
$a^{2}+b^{2}+c^{2}+2 \times 30 \Rightarrow 289$ [∵ab+bc+ca=30]
$a^{2}+b^{2}+c^{2} \Rightarrow 289-60$
$a^{2}+b^{2}+c^{2}=229$
(ii) a+b+c=15
$a^{2}+b^{2}+c^{2}=77$
a+b+c=15
Squaring both sides
$(a+b+c)^{2} =(15)^{2}$
$a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=525$
77+2(ab+bc+ca)=925
2(ab+bc+ca)=25-77
2(ab+bc+ca)=148
ab+bc+ca$=\frac{148}{2}$
ab+bc+ca=74
(iii) $a^{2}+b^{2}+c^{2}=50$ and ab+bc+ca=47
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$
=50+2×47
=50+94=144
$(a+b+c)^2=(\pm 12)^{2}$
a+b+c=土12
Question 3
(i) 8x³ + 84x²y + 294xy² + 343y³ if x = 1, y = 2
(ii) 27x³ – 27x²y + 9xy2 – y³ if x = 2, y = 1
Sol :
Question 4
(i) a³ + b³ if a + b = 3 and ab = 2
Sol :
$\Rightarrow\left(x-\frac{1}{x}\right)^{2}=16$
$\Rightarrow\left(x-\frac{1}{x}\right)^{2}=(\pm 4)^{2}$
and
$x^{3}-\frac{1}{x^{3}} \Rightarrow\left(x+\frac{1}{x}\right)^{3}+3\left(x-\frac{1}{x}\right)$
$(-4)^{3}+3 \times(-4)$
=-64-12=-76
∴$x^{3}-\frac{1}{x^{3}} \Rightarrow \pm 76$
(iv) $x^{2}+\frac{1}{25 x^{2}}=8 \frac{3}{5} \Rightarrow \frac{43}{5}$
$x^{2}+\left(\frac{1}{5 x}\right)^{2}=\frac{43}{5}$
Adding both sides $\frac{2}{5}$ $\left[2 \times x+\frac{1}{5 x} \rightarrow \frac{2}{5}\right)$
$x^{2}+\frac{1}{(5 x)^{2}}+\frac{2}{5}=\frac{43}{5}+\frac{2}{5}$
$\Rightarrow\left(x+\frac{1}{57}\right)^{2}=\frac{43+2}{5}$
$\Rightarrow\left(x+\frac{1}{5 x}\right)^{2} \Rightarrow \frac{45}{5}$
$\Rightarrow\left(x+\frac{1}{5 x}\right)^{2} \Rightarrow 9$
$7\left(x+\frac{1}{5 x}\right)^{x}=(\pm 3)^{2}$
$x+\frac{1}{5 x}=\pm 3$
When $x+\frac{1}{5 x} \Rightarrow 3$
then $x^{3}+\frac{1}{125 x^{3}}=\left(x+\frac{1}{5 x}\right)^{3}-3 \times x+\frac{1}{5 x}\left(x+\frac{1}{5 x}\right)$
⇒$(3)^{3}-\frac{3}{5} \times 3$
⇒$27-\frac{9}{5}$
⇒$\frac{135-9}{5}$
⇒$\frac{126}{5} \Rightarrow 25 \frac{1}{5}$
When $x+\frac{1}{5 x}\Rightarrow -3$
then
$x^{3}+\frac{1}{125 x^{3}}=\left(x+\frac{1}{5 x}\right)^{3}-3 x \times \frac{1}{5 x}\left(x+\frac{1}{5x} \right)$
$=(-3)^{3}-\frac{3}{5} \times(-3)$
$=-27+\frac{9}{5}$
$=\frac{-135+9}{5}$
$=\frac{-126}{5}$
$=-25 \frac{1}{5}$
Hence , $x^{3}+\frac{1}{25 x^{3}}=\pm 25 \frac{1}{5}$
Question 5
Evaluate:
(i) 102 × 98
(ii) 1003² – 997²
(iii) (10)³ – (5)³ – (5)³
Sol :
(i) 10² × 98
= (100 + 2) (100-2) {∵ {a + b)(a – b) = a² – b²)}
= (100)² – (2)²
= 10000 – 4
= 9996
(ii) (1003)² – (997)²
= (1003 + 997) (1003 – 997) {∵ a² – b² = (a + b) (a – b)}
= 2000 × 6 = 12000
(iii) (10)³ – (5)³ – (5)³ = (10)³ + (- 5)³ + (- 5)³
Let 10 = a, – 5 = b, – 5 = c and a + b + c – 10 – 5 – 5 = 0
∵ a + b + c = 0. then a³ + b³ + c³ = 3abc
⇒ (10)³ – (5)³ – (5)³ = 3 × 10 × (- 5) (- 5) = 750
No comments:
Post a Comment