Exercise 3(A)
Question 1
Write down the products for each of the following:
(i) (x + 4) (x + 2)
(ii) (4a – 5) (5a + 6)
(iii) (xy + 6) (xy – 5)
(iv) (7x² – 5y) (x² – 3y)
Sol :
(i) (x+4)(x+2)
(x+a)(x+b)=x2+x(a+b)+a×b
=x2+x(4+2)+4×2
=x2+x(6)+8
=x2+6x+8
(ii) (4a-5)(5a+6)
=4a(5a+6)-5(5a+6)
=20a2+24a−25a−30
=20a2−a−30
(iii) (xy+6)(xy-5)
=(xy)2+(6−5)xy+6(−5)
=x2y2+xy−30
(iv) (7x2−5y)(x2−3y)
=7x2×x2−7x2×3y−5y×x2+5y×3y
=7x4−21x2y−5x2y+15y2
=7x4−26x2y+15y2
Question 2
Write down the squares of the following expressions
(i) 3x + 5y
(ii) 5y – 2z
(iii) 5p – 14q
(iv) (5x + 3y + z)²
(v) (- 3m – 5n + 2p)²
(v) (2x – 13p + 3q)²
Sol :
We know that (a+b)2=(a2+(b)2+2ab
We know that (a−b)2=(a2+(b)2+2ab
=(5y)2+(2z)2−2×5y×2z
=25y2+4z2−20yz
Question 3
Simplify:
(2x – p + c)² – (2x + p – c)²
Sol :
=(4x2+p2+c2−4xp−2pc+4cx)
=(4x2+p2+c2+4px−2pc−4cx)
=4x2+p2+c2−4xp−2pc+4cx−4x2−p2−c2−4px+2pc+4cx
=-8xp+8cx
Question 4
Write down the following products :
(i) (3b + 7) (3b – 7)
(ii) (13−5x)(13+5x)
(iii) (x³ – 3) (x³ + 3)
(iv) (a4−15y)(a4+15y)
Sol :
we know that (a+b)(a−b)=(a)2−(b)2
=(3b)2−(7)2
=9b2−49
(ii) (13−5x)(13+5x)
we know that (a−b)(a+b)=(a)2−(b)2
=(13)2−(5x)2
=19−25x2
(iii) (x3−3)(x3+3)
We know that (a−b)(a+b)=(a)2−(b)2
=(x3)2−(3)2
=x6−9
(iv) (a4−15y)(a4+15y)
We know that (a−b)(a+b)=(a)2−(b)2
=(a4)2−(15y)2
=a8−125y2
Question 5
Find the products :
(i) (x + y) (x – y) (x² + y²)
(ii) (a² + b²) (a4 + b4) (a + b) (a – b)
Sol :
=[(x)2−(y)2](x2+y2)
=(x2−y2)(x2+y2)
=(x2)2−(y2)2
=x4−y4
(ii) (a2+b2)(a4+b4)(a+b)(a−b)
=(a2+b2)(a4+b4)[(a)2−(b)2]
=(a2+b2)(a4+b4)(a2+b2)
=(a2+b2)(a2−b2)(a4+b4)
=[(a2)2+(b2)2](a4+b4)
=(a4−b4)(a4+b4)
=(a4)2−(b4)2
=a8−b8
Question 6
State which of the following expressions is a perfect square :
(i) x² + 8x + 16
(ii) y² + 3y + 9
(iii) 4m² + 4m + 1
(iv) 4x² – 2 + 14x²
(v) m² – 6m + 4
Sol :
=(x)2+8×x×16+(16)2
=(x+16)2 It is a perfect square of (x+16)
(ii) y2+3y+9
=(y)2+3y+(3)2
It is not a perfect square because the second term of 3y is not twice the product of y and 3
(iii) 4m2+4m+7
=(2m)2+2×2m+1+(1)2
=(2m+1)2
Hence , it is a perfect square of (2m+1)
(iv) 4x2−2+14x2
=[2x−12x]2
Hence , it is a perfect square of (2x−12x)
(v) m2−6m+4
=(m)2−6m+(2)2
It is not a perfect square because the second term 6m is not twice the product of m and 2
Question 7
If 4x² – 12x + k is a perfect square, find the numerical value of k.
Sol :
=(2x)2−2×2x×3+(30)2
By comparing we get K=9
Question 8
What term should be added to each of the following expression to make it a perfect square?
(i) 4a² + 28a
(ii) 36a² + 49b²
(iii) 4a² + 81
(iv) 9a² + 2ab + b²
(v) $49a^4+ 50a^2b^2 + 16b^4$
Sol :
=(2a)2+2×2a×7+(7)2
To complete it in perfect square
We have to add (7)2=49
By adding 49, we get (2a+7)2
(ii) (36a2+49b2)
=(6a)2+(7b)2+2×69×7
To complete it in a perfect square
We have to add 2×6a×7b=84
On adding 84ab, we get (6a−7b)2
(iii) 4a2+81
Sol :
=(2a)2+(9)2+2×2a×9
To complete it in a perfect square
We have to add 2×2a×9=36a
On adding 36a, we get (2a+9)2
(iv) 9a2+2ab+b2
=(3a)2+(b)2+2×3a×b
=(3a)2+(b)2+6ab
To complete it in a perfect square
We have to add 6ab-2ab=4ab
By adding 4ab
We get (3a+b)2
(v) 49a4+50a2b2+16b4
=(7a)2+2×7a2×4b2+(4 b2)2
=(7a2)2+56a2b2+(4b2)2
To complete it in a perfect square
We have to add 56a2b2−50a2b2=6a2b2
By adding 6a2b2
We get (7a2+4b2)2
Question 9
Write down the expansion of the following
(i) (a + 1)³
(ii) (3x – 2y)³
(iii) (x² + y)³
(iv) \left(2x – \frac{1}{3x}\right)^3
(v) \left(\frac{a}{5}+\frac{b}{2}\right)^3
Sol :
\Rightarrow(a+1)^{2} \Rightarrow(9)^{3}+3 a^{2} \times 1+3 a \times\left(1)^{2}+(1)^{3}\right.
\Rightarrow a^{3}+3 a^{2}+3 a+1
(ii) (3 x-2 y)^{3}
=(3 x)^{3}-3(3 x)^{2}(2 y)+3(3 x)(2 y)^{2}-(2 y)^{3}
= 27x^{3}- 3 \times 9 x^{2} \times 2 y+9 x \times 4 y^{2}-8 y^{3}
=27 x^{3}-54 x^{2} y+36 x y^{2}-8 y^{3}
(iii) \left(x^{2}+y\right)^{3}
=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(y)+3\left(x^{2}\right)(y)^{2}+(y)^{3}
= x^{6}+3 \times x^{4} \times y+3 x^{2} y^{2}+y^{3}
= x^{6}+3 x^{4} y+3 x^{2} y^{2}+y^{3}
(iv) \left(2 x-\frac{1}{3 x}\right)^{3}
=(2 x)^{3}-3 \times (2 x)^{2} \times \left(\frac{1}{3 x}\right)+3(2 x)\left(\frac{1}{3 x}\right)^{2}-\left(\frac{1}{3 x}\right)^{3}
=8x^{3}-3 \times 4 x^{2} \times \frac{1}{3x}+3 \times 2 x \times \frac{1}{9x^2}-\frac{1}{27 x^{3}}
=8 x^{3}-4 x+\frac{2}{3 x}-\frac{1}{27 x^{3}}
(v) \left(\frac{a}{5}+\frac{b}{2}\right)^{3}
=\left(\frac{a}{5}\right)^{3}+3\left(\frac{a}{5}\right)^{2}\left(\frac{b}{2}\right)+3\left(\frac{a}{5}\right)\left(\frac{b}{2}\right)^{2}+\left(\frac{b}{2}\right)^{3}
=\frac{a^{3}}{125}+3 \times \frac{a^{2}}{25} \times \frac{b}{2}+3 \times \frac{9}{5} \times \frac{b^{2}}{4}+\frac{b^{3}}{8}
=\frac{a^{3}}{125}+\frac{3 a^{2} b}{50}+\frac{3 a b^{2}}{20}+\frac{b^{3}}{8}
No comments:
Post a Comment