Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

SChand CLASS 9 Chapter 3 Expansions Exercise 3(A)

 Exercise 3(A)

Question 1

Write down the products for each of the following:

(i) (x + 4) (x + 2)

(ii) (4a – 5) (5a + 6)

(iii) (xy + 6) (xy – 5)

(iv) (7x² – 5y) (x² – 3y)

Sol :

(i) (x+4)(x+2)

(x+a)(x+b)=x2+x(a+b)+a×b

=x2+x(4+2)+4×2

=x2+x(6)+8

=x2+6x+8


(ii) (4a-5)(5a+6)

=4a(5a+6)-5(5a+6)

=20a2+24a25a30

=20a2a30


(iii) (xy+6)(xy-5)

=(xy)2+(65)xy+6(5)

=x2y2+xy30


(iv) (7x25y)(x23y)

=7x2×x27x2×3y5y×x2+5y×3y

=7x421x2y5x2y+15y2

=7x426x2y+15y2


Question 2

Write down the squares of the following expressions

(i) 3x + 5y

(ii) 5y – 2z

(iii) 5p – 14q

(iv) (5x + 3y + z)²

(v) (- 3m – 5n + 2p)²

(v) (2x – 13p + 3q)²

Sol :

(i) (3x+5y)2

We know that (a+b)2=(a2+(b)2+2ab

=(3x)2+(5y)2+2×3x×5y
=9x2+25y2+30xy


(ii) (5y2z)2

We know that (ab)2=(a2+(b)2+2ab

=(5y)2+(2z)22×5y×2z

=25y2+4z220yz


Question 3

Simplify:

(2x – p + c)² – (2x + p – c)²

Sol :

(2xp+c)2(2x+pc)2

=(4x2+p2+c24xp2pc+4cx)

=(4x2+p2+c2+4px2pc4cx)

=4x2+p2+c24xp2pc+4cx4x2p2c24px+2pc+4cx

=-8xp+8cx


Question 4

Write down the following products :

(i) (3b + 7) (3b – 7)

(ii) (135x)(13+5x)

(iii) (x³ – 3) (x³ + 3)

(iv) (a415y)(a4+15y)

Sol :

(i) (3b+7)(3b-7)

we know that (a+b)(ab)=(a)2(b)2

=(3b)2(7)2

=9b249


(ii) (135x)(13+5x)

we know that (ab)(a+b)=(a)2(b)2

=(13)2(5x)2

=1925x2


(iii) (x33)(x3+3)

We know that (ab)(a+b)=(a)2(b)2

=(x3)2(3)2

=x69


(iv) (a415y)(a4+15y)

We know that (ab)(a+b)=(a)2(b)2

=(a4)2(15y)2

=a8125y2


Question 5

Find the products :

(i) (x + y) (x – y) (x² + y²)

(ii) (a² + b²) (a4 + b4) (a + b) (a – b)

Sol :

(i) (x+y)(xy)(x2+y2)

=[(x)2(y)2](x2+y2)

=(x2y2)(x2+y2)

=(x2)2(y2)2

=x4y4


(ii) (a2+b2)(a4+b4)(a+b)(ab)

=(a2+b2)(a4+b4)[(a)2(b)2]

=(a2+b2)(a4+b4)(a2+b2)

=(a2+b2)(a2b2)(a4+b4)

=[(a2)2+(b2)2](a4+b4)

=(a4b4)(a4+b4)

=(a4)2(b4)2

=a8b8


Question 6

State which of the following expressions is a perfect square :

(i) x² + 8x + 16

(ii) y² + 3y + 9

(iii) 4m² + 4m + 1

(iv) 4x² – 2 + 14x²

(v) m² – 6m + 4

Sol :

(i) x2+8x+16

=(x)2+8×x×16+(16)2

=(x+16)2 It is a perfect square of (x+16)


(ii) y2+3y+9

=(y)2+3y+(3)2

It is not a perfect square because the second term of 3y is not twice the product of y and 3


(iii) 4m2+4m+7

=(2m)2+2×2m+1+(1)2

=(2m+1)2

Hence , it is a perfect square of (2m+1)


(iv) 4x22+14x2

=[2x12x]2

Hence , it is a perfect square of (2x12x)


(v) m26m+4

=(m)26m+(2)2

It is not a perfect square because the second term 6m is not twice the product of m and 2


Question 7

If 4x² – 12x + k is a perfect square, find the numerical value of k.

Sol :

=4x212x+k

=(2x)22×2x×3+(30)2

By comparing we get K=9


Question 8

What term should be added to each of the following expression to make it a perfect square?

(i) 4a² + 28a

(ii) 36a² + 49b²

(iii) 4a² + 81

(iv) 9a² + 2ab + b²

(v) $49a^4+ 50a^2b^2 + 16b^4$

Sol :

(i) 4a2+28a

=(2a)2+2×2a×7+(7)2

To complete it in perfect square

We have to add (7)2=49

By adding 49, we get (2a+7)2


(ii) (36a2+49b2)

=(6a)2+(7b)2+2×69×7

To complete it in a perfect square 

We have to add 2×6a×7b=84

On adding 84ab, we get (6a7b)2


(iii) 4a2+81

Sol :

=(2a)2+(9)2+2×2a×9

To complete it in a perfect square 

We have to add 2×2a×9=36a

On adding 36a, we get (2a+9)2


(iv) 9a2+2ab+b2

=(3a)2+(b)2+2×3a×b

=(3a)2+(b)2+6ab

To complete it in a perfect square 

We have to add 6ab-2ab=4ab

By adding 4ab

We get (3a+b)2


(v) 49a4+50a2b2+16b4

=(7a)2+2×7a2×4b2+(4 b2)2

=(7a2)2+56a2b2+(4b2)2

To complete it in a perfect square

We have to add 56a2b250a2b2=6a2b2

By adding 6a2b2

We get (7a2+4b2)2


Question 9

Write down the expansion of the following

(i) (a + 1)³

(ii) (3x – 2y)³

(iii) (x² + y)³

(iv) \left(2x – \frac{1}{3x}\right)^3

(v) \left(\frac{a}{5}+\frac{b}{2}\right)^3

Sol :

(i) (a+1)^{3}

\Rightarrow(a+1)^{2} \Rightarrow(9)^{3}+3 a^{2} \times 1+3 a \times\left(1)^{2}+(1)^{3}\right.

\Rightarrow a^{3}+3 a^{2}+3 a+1


(ii) (3 x-2 y)^{3}

=(3 x)^{3}-3(3 x)^{2}(2 y)+3(3 x)(2 y)^{2}-(2 y)^{3}

= 27x^{3}- 3 \times 9 x^{2} \times 2 y+9 x \times 4 y^{2}-8 y^{3}

=27 x^{3}-54 x^{2} y+36 x y^{2}-8 y^{3}


(iii) \left(x^{2}+y\right)^{3}

=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(y)+3\left(x^{2}\right)(y)^{2}+(y)^{3}

= x^{6}+3 \times x^{4} \times y+3 x^{2} y^{2}+y^{3}

= x^{6}+3 x^{4} y+3 x^{2} y^{2}+y^{3}



(iv) \left(2 x-\frac{1}{3 x}\right)^{3}

=(2 x)^{3}-3 \times (2 x)^{2} \times \left(\frac{1}{3 x}\right)+3(2 x)\left(\frac{1}{3 x}\right)^{2}-\left(\frac{1}{3 x}\right)^{3}


=8x^{3}-3 \times 4 x^{2} \times \frac{1}{3x}+3 \times 2 x \times \frac{1}{9x^2}-\frac{1}{27 x^{3}}

=8 x^{3}-4 x+\frac{2}{3 x}-\frac{1}{27 x^{3}}


(v) \left(\frac{a}{5}+\frac{b}{2}\right)^{3}

=\left(\frac{a}{5}\right)^{3}+3\left(\frac{a}{5}\right)^{2}\left(\frac{b}{2}\right)+3\left(\frac{a}{5}\right)\left(\frac{b}{2}\right)^{2}+\left(\frac{b}{2}\right)^{3}

=\frac{a^{3}}{125}+3 \times \frac{a^{2}}{25} \times \frac{b}{2}+3 \times \frac{9}{5} \times \frac{b^{2}}{4}+\frac{b^{3}}{8}

=\frac{a^{3}}{125}+\frac{3 a^{2} b}{50}+\frac{3 a b^{2}}{20}+\frac{b^{3}}{8}

No comments:

Post a Comment

Contact Form

Name

Email *

Message *