TEST
Question 1
Ans: $(1.21$ and $(3,8)$ are the end point of a diagonal of a square
So length of diagonal $=\sqrt{(3-1)^{2}+(8-2)^{2}}$
$=\sqrt{2^{2}+6^{2}}=\sqrt{4+36}=\sqrt{60}$
So Area of square $=\frac{(\text { diagonal })^{2}}{2}$
$\frac{\sqrt{40} 1^{2}}{2}=\frac{40}{2}=20$ sq units (b)
Question 2
Ans: Distance between $(0,-5)$ and $(x, 0)=13$
$\begin{aligned}&\Rightarrow \sqrt{(x-0)^{2}+(0+5)^{2}}=13 \\&\Rightarrow \sqrt{x^{2}+25}=13\end{aligned}$
squaring both sides.
$\begin{aligned}&x^{2}+25=169 \Rightarrow x^{2}=169-25-144 \\&\Rightarrow x^{2}=1 \pm 121^{2} \\&\text { So } x=\pm 12 \text { (d) }\end{aligned}$
Question 4
Ans: Distance between origin $(0.0)$ is
(9) $(2,-3)=\sqrt{2^{2}+3^{2}}=\sqrt{4+9} \sqrt{13}$
(b) $(6,0)=\sqrt{6^{2}+0^{2}}=\sqrt{36} 6$
(C) $(-2,-1)=\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}$
(d) $(3,5)=\sqrt{3^{2}+5^{2}}=\sqrt{9+25}=\sqrt{34}$
it is clear that point $(-2,-1)$ is nearest 10 $(0,0)$
option (C) is correct
Question 5
Ans: The coordinates of the each of a side ay square are $(4,-3)$ and $(-1,-5)$
so length of side $=\sqrt{(-1-4)^{2}+(-5+3)^{2}}$.
$\begin{aligned}&=\sqrt{(-5)^{2}+(-2)^{2}} \\&=\sqrt{25+4}=\sqrt{29} \\&\text { so Area of square }=\text { (side }^{2} \\&\left.=(\sqrt{29})^{2} \text { sq units }(d)\right)\end{aligned}$
Question 7
Ans: $2 x-y-1=0$ and $2 x+y=9$
$\Rightarrow x=\frac{y+1}{2}$
Giving some different values of $y$, we ret corresponding values of $x$ as given below.
$\begin{array}{|c|c|c|c|}\hline x & 1 & 2 & 0 \\\hline y & 1 & 3 & -1 \\\hline\end{array}$
Plot the points $(1,1)(2,3)$ and $(0,-1)$ on the graph and Join them to get a line.
Similarly $2 x+y=y$
$y=y-2 x$
$\begin{array}{|c|c|c|c|}\hline x & 4 & 5 & 6 \\\hline y & 1 & -1 & -3 \\\hline\end{array}$
Plot the points (4,1)$1(5,-1)$ and $(6,-3)$ on the graph and Join them to get another line.
These two lines intersect each other at point
$\begin{aligned}&\left(\frac{5}{2}, 4\right) \\&\text { so } x=\frac{5}{2}, y=4\end{aligned}$
(IMAGE TO BE ADDED)
Question 8
Ans: from the given graph.
Two points are given on it whose $x$ and $y$ are equal but in opposite signs it is through the origin
Equation will be $x=-y$
$\Rightarrow x+y=0$ (b)
Question 9
Ans: The distance between the point $(0,0)$ and point af intersection of $x=3$ and $y=4$
i.e. $\left(3,4)\right.$ will be $=\sqrt{(3-0)^{2}+(4-0)^{2}}$
$\begin{aligned}&=\sqrt{3^{2}+4^{2}}=\sqrt{9+16} \\&=\sqrt{25}=5 \text { units }\end{aligned}$
Question 10
Ans: The pointe $(-4,0),(4,0),(0,3)$ are given Now,
$\begin{aligned}A B &=\sqrt{(4+4)^{2}+(0+0)^{2}}=\sqrt{8^{2}+0^{2}} \\&=\sqrt{64}=8 \\B C &=\sqrt{(0-4)^{2}+(3-0)^{2}}=\sqrt{\left.(-4)^{2}+13\right)^{2}} \\&=\sqrt{16+9}=\sqrt{25}=5 \\& A C=\sqrt{10-4)^{2}+(3-0)^{2}}=\sqrt{(-4)^{2}+(3)^{2}} \\&=\sqrt{16+9}=\sqrt{25}=5 \\& \text { So } B C=A C\end{aligned}$
SO the given points are the vertices of an isosceles triangle (b)
No comments:
Post a Comment