EXERCISE 20 D
Question 1
Ans: Ans-1. We know that distance between two points
P(x1,y1) and Q(x2,y2)=√(x2−x1)2+(y2−y1)2
(i) Distance between (0,0) and (2,3)
=√(2−0)2+(3−0)2=√22+32=√4+9=√13
(iii) istance between (−3,0) and (0,√7)
=√[0−(−3)]2+(√7−0)2=√(3)2+√7)2=√9+7=√16=4
(iv) Distance between (7,9) and (4,7)
=√(4−7)2+(5−9)2=√(−3)2+(−4)2=√9+16=√25=5
(v) Distance between (−6,−1),(−6,11)
=√(−6−(−6)]2+[11−(−1)]2=√(−6+6)2+(11+1)2=√02+122=√122=12
(vi)Distarce between (a+b,a−b) and (a−b,−a−b)
=√[(a−b)−(a+b)]2+[(−a−b)−(a−b)]2=√(a−b−a−b)2+(−a−b−a+b)2=√(−2b)2+(−2a)2=√4b2+4a2=√4(a2+b2)=2√a2+b2
(vii) Distance between (2,−11) and (−4,−3)
=√(−4−2)2+(−3−(−11)]2=√(−6)2+(−3+11)2=√(−6)2+(812=√36+64=√100=10
(viii)
Distance between (a,b) and (2a,b)
=√(2a−a)2+(b−b)2=√(a)2+(0)2=√a2=a
Question 2
Ans-2. We know that distance between two points
=√(x2−x1)2+(y2−y1)2
Distance between two points (0,0) and (x,3)
=√(x−0)2+(3−0)2=√x2+32=√x2+9
But distance given =5
So √x2+9=5
Question 3
Ans: (ii) Radius = distance between (0,01 and (−6,8)
=√(−6−0)2+(8−0)2=√(−6)2+(8)2=√36+64=√100=10 units
(ii)
Radius =distance (2,0) and (7,−12)
=√(x2−x1)2+(y2−y1)2
=√(7−2)2+(−12−0)2
=√(5)2+(−12)2
=√25+144=√169=13 units
Question 4
Ans: In a △ABC vertices are
$$\begin{aligned}&A(3,4), B(2,-1), C(4,-6) \\&\text { length of } A B=\sqrt{(2-3)^{2}+(-1-4)^{2}} \\&\left(Q \text {distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right) \\&=\sqrt{(-1)^{2}+(-5)^{2}}=\sqrt{1+25}=\sqrt{26} \\&\text { length of } B C=\sqrt{\left.(4-2)^{2}+[-6+-1)\right]^{2}} \\&=\sqrt{(2)^{2}+(-6+1)^{2}}\end{aligned}$
=√(2)2+(−5)2
=√1+25=√2.3
and CA=√(4⋅3)2+(−6−1)2
√(1)2+(−10)2
=√1+100=√101
Question 5
Ans: let the point on x-area be (x,0) as it lies cm x-axis there fore its y- Co-ordinate s =0
So d=√(x2−x1)2+(y2−y1)2⇒10=√(−4−x)2+(8−0)2⇒10=√(−4−x)2+(812⇒10=√16+x2+8x+64⇒10=√x2+8x+80
Squaring both sides
100=x2+3x+80
⇒x2+8x+80−100=0
⇒x2+8x−20=0
⇒x2+10x−2x−20=0
⇒x(x+10)−2(x+10)=0
⇒(x+10)(x−2)=0
Either x + 10 = 0 Then x =-10
or x−2=0, then x=2
So the points will be (-10, 0) and (2,0)
Question 6
Ans: Let point A be the required point which is equidistant from P and Q
if it lies on y - axis
So it x - coordinate =0
Let point A be (o, y)
Using distance formula
Distance between AP and AQ are equal
So √(0−0)2+(y−8)2=√[0−(−4)2+(y−4)2⇒√02+(y−8)2=√(4)2+(y−4)2=√(y−8)2=√16+(y−4)2
squaring boths sides
(y−8)2=16+(y−4)2y2−16y+64=16+y2−8y−16y2−16y−y2+8y=32−64−8y=−32⇒y=−32−8=4
So points will be (0,4)
Question 7
Ans: Let length of line AD = 10
One end points A(−3,2) and let second end points is be (x,10)
So AB=√[x−(−3)]2+(10−2)2=10=√(x+3)2+(3)2
squaring both sides
100=(x+3)2+64(x+3)2+64−100=0x2+6x+9+64−100=0x2+6x−27=0⇒x2+9x−3x−27=0⇒x(x+9)−3(x+9)=0⇒(x+9)(x−3)=0
Either x+9=0 then x=−9
or x−3=0 then x=3
Abscissa =−9 or 3 Hence proved
Question 8
Ans: (i) let A(−5,1)B(1,−1) and C(1,−2) are the points
If sum of length of any two lines is equal to the third then these points are collinear
Now AB= √(1+5)2+(−1−1)2
=√62+(−2)2=(√36+4=√40=2√10
BC=√(1−1)2+(−2+1)2
=√02+(−1)2=√(−1)2=√1=1
CA=√(1+5)2+(−2−1)2=√62+(−3)2
=√36+9=√45
=√9×5=3√5
We see that the points are not collinear
(ii) if points (−1,3), (2,P) ard (5,−1) are collinear
Let A(−1,3) B (2,P ) andC (5,-1)
Now AA=√(−1−2)2+(3−p)2=√(−3)2+(3−p)2
=√9+9−6p+p2=√p2−6p+18
BC=√(2−5)2+(p+1)2
=√(−3)2+(p+1)2
=√9+p2+2p+1
=√p2+2p+10
and CA=√(5+1)2+(−1−3)2
=√(6)2+(−4)2=√36+16=√52
if A,B and C orre collincar
so BC=AB+CA
√p2+2p+10=√p2−6p+18+√52
squaring both sides
p2+2p+10=p2−6p+18+52+2√52√p2−6p+18
p2+2p+10−p2+6p−18−52=2×2√13
√p2−6p+18
8p−60=4√13√p2−6p+18
2p−15=√13(p2−6p+18
Again squaring both sides
(2p−15)2=13(p2−6p+18)
⇒4p2−60p+225=13p2−78p+234
⇒13p2−78p+234−4p2+60p−225=0
⇒9p2−18p+9=0
⇒p2−2p+1=0
⇒(p−1)2=0⇒p−1=0
so p=1
Question 9
Ans: Points are (−5,2),B(1,−2) and C(x,4)
Now AB=√(−5−1)2+(2+2)2=√(−6)2+(4)2=√36+16=√52BC=√(1−x)2+(−2−42)=√(1−x)2+(6)2=√(1−x)2+36
if AB=BC
so √52=√(1−x)2+36
Squaring both sides
52=(1−x)2+36⇒(1−x)2=52−36=16
⇒1+x2+2x=16⇒x2+2x+1−16=0
⇒x2+2x−15=0
⇒x2+5x−3x−15=0
⇒x(x+5)−3(x+5)=0
⇒(x+5)(x−3)=0
Either x+5=0 then x=−5
or x−3=0, then x=3
Hence x=3,−5
Question 10
Ans: We know that a triangle
Is an isosceles if any two sides are equal ,
Now P(2,0),Q(6,0) and R(4,4)
Now PQ=√(6−2)2+(0−0)2=√42+02=√16+0=√16=4
QR=√(6−412+(0−4)2=√(2)2+(−4)2
=√4+16=√20
RP=√(4−2)2+(4−0)2=√(2)2+(4)2
=√4+16=√20
if QR=RP=√20
So △PQR is an isosceles triangle.
Question 12
Ans:(i) points are A(0,4)B(2,5)C(3,3)
AB=√(x2−x1)2+(y2−y1)2=√(2−0)2+(5−4)2=√(2)2+(1)2=√4+1=√5
Similarly BC=√(3−2)2+(3−5)2
=√(1)2+(−2)2+√1+4=√5
and CA=√(0−3)2+(4−312=√(−3)2+(1)2=√9+1=√10
We see that AB = BC = √5
So it is an isosceles triangle
And AB2+BC2=(√5)2+(√5)2=5+5=10
and CA2=(√10)2=10
if AB2+BC2=CA2
So it is an isosceles right angle
Area of △ABC=12AB×BC
=12√5×√5=52=2.5 square units
(ii)points are A(3,5),B(1,1),C(5,3) and D(7,7)
AB=√(x2−x1)2+(y2−y1)2=√(1−3)2+(1−5)2=√(−2)2+(−4)2=√4+16=√20
BC=√(3+)2+(3−1)2=√(4)2+(2)2=√16+4=√20CD=√(7−5)2+(7−3)2=√(2.12+(4)1=√4+16=√20
DA=√(3−7)2+(5−7)2
=√(−4)2+(−2)2=√16+4=√20
we see that AB=BC=CD=DA
So ABCD is a rhombus or a square
Not diagonal AC = √(5−3)2+(3−5)2
=√(2)2+(−2)2=√4+4=√8
and dingonal BD =√(7−1)2+(7−1)2
=√(6)2+(6)2=√36+36=√72
If Diagonals are not equal
So it is a rhombus not a square
Not area of rhombus ABCD= 12 product of Diagonals
=12√8×√72
=12√576
=12×24=12sq. units
Question 13
Ans: (i) Points are A(1,5),B(3,5) C (2,√3 )
Now AB=√(x2−x1)2+(y2−y1)2
=√(3−1)2+(√3−√3)2=√(2)2+(0)2
=√4+0=√4=2
Similarly BC = √(2−3)2+ 2√3 - √32
=√(1)2+(13)2=√1+3=√4=2
and CA=√(1−2)2+(√3−2√3)2
=√(−1)2+(√−3)2
=√1+3=√4=2
We see that AB = BC = CA=2
So △ABC is an equilateral triangle
(ii) points A(1.1)B(−1,−1)⋅C (-√3 ,√3)
Now AD=√(x2−x1)2+(y2−y1)2=√(−1−1)2+(−1−1)2
=√(−2)2+(−2)2=√4+4=√8
similarly BC=√[−53−(−1)]2+[√3−(−1]2
=√(−√3+1)2+(√3+1)2
=√(3+1−25+3+1+2√3)=√8
We see that AB = BC = CA = √8
So △ABC is an equilateral triangle.
Question 14
Ans: Let the vertices be A(−2,61)(5,3),C(−1,−11) and D(−8,−8)
AB=√(x2−x1)2+(y2−y1)2=√(5−(−2))2+(3−6)2=√(5+2)2+(3−6)2=√(7)2+(−3)2=√49+9=√58 similanly BC=√(−1−5)2+(−11−3)2
=√(−6)2+(−14)2
=√36+196=√232
CD=√[−8−(−11]2+[−8−(−11)]2
=√(−8+1)2+(−8+11)2
=√(−7)2+(3)2=√49+19=√58
OA=√−2−(−8)2+[6−(−8)]2=√(−2+8)2+(6+8)2=√(6)2+(14)2=√36+196=√232
We see that AB = CD and AD = BC
So ABCD is a rectangle
Question 15
Ans: Center of the circle is origin 0(0,0) and length of the radius of the circle =10 units
(i) Now distance between (0,0) and (6,81
=√(x2−x1)2+(y2−y1)2=√(6−0)2+(8−0)2=√(6)2+(8)2=√36+64=√100=10
So This point (6,8) lies on the circle
(ii) Similarly distance between (0,0) and (0,11)
=√(0−0)2+(11−0)2=√(0)2+(11)2=√0+121=√121=11 is 11>10
so This point is outside the circle
(iii) Distance between (0,0) and (−10,10)
=√(−10−0)2+(0−0)2=√(−10)2+1012=√100+0=√100=10
so This point lies on the circle
(iv) Distance between (0,0) and (7,7)
=√(7−0)2+(7−012=√(7)2+(7)2=√49+49=√98
So √98<10
So This point is inside the circle
(v) Distance between (0.0) and (−9,+1
=√(−9−0)2+(4−0)2=√(−9)2+(4)2=√81+16=√97 if √97<10
So This point is inside the circle
Question 16
Ans: if the point p(2,−5) is mapped into point p' in the x-axis
So The co- ordinates of p' will be (2,5)
If the point is (3,7) is mapped to 81 in the origin
so co-ordinates of Q′ will be (−3,−71
Now length of PQ=√(x2−x1)2+(y2−y1)2
=√(3−2)2+(7−(−5)]2=√(1)2+(7+5)2=√(1)2+(12)2=√1+(44=√145 units and p′θ)=√(−3−2)2+(−7,−32
=√(−5)2+(−12)2
=√25+144=√169=13 units
Question 17
Ans: Co-ordinates of points P and Q are (4,1) and (2,0) respectively.
(i) p' is the image of p(4,1) under reflection in y.ary is as so co-ordinates of p' will be (−4,1)
(ii) The line joining the point p and p' is parallel to to x- axis at a distance of 1 on the positive of side y-axis
If Q' is the image of Q(2,0) in the line pp'
So (2,2x−y) or 2(2×1−0) or (2,2−01 or (2,2)
(iii)
‖v′0=√(x2−x1)2+(y2−y1)2=√[2−(−4)2+(2−1)2=√(2+4)2+π)2=√(6)2+(112=√36+1=√37 units
Question 18
Ans: A(5,1) in the center of circle Radius as the circle of =13 units AB⊥PQ where PQ is a chord al the circle Co-ordinates of D are (2,−3)
if AB⊥PQ
So B is the mid-point of PQ
(i)
Now AD =√(x2−x1)2+(y2−y1)2=√(2−5)2+(−3−1)2=√(−3)2+1−4)2=√9+16=√25=5 units
(ii) △APB.
AP2=AB2+PB2⇒(13)2=(5)2+PB2
=169=25+PB2⇒PB2=169−25=144
=(12)2
So PB=12 units
No comments:
Post a Comment