SChand CLASS 9 Chapter 20 Coordinates and Graphs of Simultaneous Linear Equation Exercise 20(D)

 EXERCISE 20 D


Question 1

Ans: Ans-1. We know that distance between two points
P(x1,y1) and Q(x2,y2)=(x2x1)2+(y2y1)2
(i) Distance between (0,0) and (2,3)
=(20)2+(30)2=22+32=4+9=13
(iii) istance between (3,0) and (0,7)
=[0(3)]2+(70)2=(3)2+7)2=9+7=16=4
(iv) Distance between (7,9) and (4,7)
=(47)2+(59)2=(3)2+(4)2=9+16=25=5
(v) Distance between (6,1),(6,11)
=(6(6)]2+[11(1)]2=(6+6)2+(11+1)2=02+122=122=12
(vi)Distarce between (a+b,ab) and (ab,ab)
=[(ab)(a+b)]2+[(ab)(ab)]2=(abab)2+(aba+b)2=(2b)2+(2a)2=4b2+4a2=4(a2+b2)=2a2+b2
(vii) Distance between (2,11) and (4,3)
=(42)2+(3(11)]2=(6)2+(3+11)2=(6)2+(812=36+64=100=10
(viii)
Distance between (a,b) and (2a,b)
=(2aa)2+(bb)2=(a)2+(0)2=a2=a

Question 2

Ans-2. We know that distance between two points
=(x2x1)2+(y2y1)2
Distance between two points (0,0) and (x,3)
=(x0)2+(30)2=x2+32=x2+9
But distance given =5
So x2+9=5

Question 3

Ans: (ii) Radius = distance between (0,01 and (6,8)
=(60)2+(80)2=(6)2+(8)2=36+64=100=10 units 

(ii)
Radius =distance (2,0) and (7,12)
=(x2x1)2+(y2y1)2
=(72)2+(120)2
=(5)2+(12)2
=25+144=169=13 units

Question 4

Ans: In a ABC vertices are
$$\begin{aligned}&A(3,4), B(2,-1), C(4,-6) \\&\text { length of } A B=\sqrt{(2-3)^{2}+(-1-4)^{2}} \\&\left(Q \text {distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right) \\&=\sqrt{(-1)^{2}+(-5)^{2}}=\sqrt{1+25}=\sqrt{26} \\&\text { length of } B C=\sqrt{\left.(4-2)^{2}+[-6+-1)\right]^{2}} \\&=\sqrt{(2)^{2}+(-6+1)^{2}}\end{aligned}$
=(2)2+(5)2
=1+25=2.3
and CA=(43)2+(61)2
(1)2+(10)2
=1+100=101

Question 5
 
Ans: let the point on x-area be (x,0) as it lies cm x-axis there fore its y- Co-ordinate s =0
So d=(x2x1)2+(y2y1)210=(4x)2+(80)210=(4x)2+(81210=16+x2+8x+6410=x2+8x+80

Squaring both sides 
100=x2+3x+80
x2+8x+80100=0
x2+8x20=0
x2+10x2x20=0
x(x+10)2(x+10)=0
(x+10)(x2)=0
Either x + 10 = 0 Then x =-10 
or x2=0, then x=2
So the points will be (-10, 0) and (2,0)
  
Question 6

Ans: Let point A be the required point which is equidistant from P and Q 
if it lies on y - axis 
So it x - coordinate =0 
Let point A be (o, y)
Using distance formula 
Distance between AP and AQ are equal 
So (00)2+(y8)2=[0(4)2+(y4)202+(y8)2=(4)2+(y4)2=(y8)2=16+(y4)2
squaring boths sides
(y8)2=16+(y4)2y216y+64=16+y28y16y216yy2+8y=32648y=32y=328=4
So points will be (0,4)
  
Question 7

Ans: Let length of line AD = 10 
One end points A(3,2) and let second end points is be (x,10)
 So AB=[x(3)]2+(102)2=10=(x+3)2+(3)2
squaring both sides
100=(x+3)2+64(x+3)2+64100=0x2+6x+9+64100=0x2+6x27=0x2+9x3x27=0x(x+9)3(x+9)=0(x+9)(x3)=0
Either x+9=0 then x=9
or x3=0 then x=3
Abscissa =9 or 3 Hence proved

Question 8

Ans: (i) let A(5,1)B(1,1) and C(1,2) are the points

If sum of length of any two lines is equal to the third then these points are collinear
Now AB= (1+5)2+(11)2
=62+(2)2=(36+4=40=210
BC=(11)2+(2+1)2
=02+(1)2=(1)2=1=1
CA=(1+5)2+(21)2=62+(3)2
=36+9=45
=9×5=35
We see that the points are not collinear 

(ii) if points (1,3), (2,P) ard (5,1) are collinear
Let A(1,3) B (2,P ) andC (5,-1)
Now AA=(12)2+(3p)2=(3)2+(3p)2
=9+96p+p2=p26p+18
BC=(25)2+(p+1)2
=(3)2+(p+1)2
=9+p2+2p+1
=p2+2p+10
and CA=(5+1)2+(13)2
=(6)2+(4)2=36+16=52
if A,B and C orre collincar
so BC=AB+CA
p2+2p+10=p26p+18+52
squaring both sides
p2+2p+10=p26p+18+52+252p26p+18
p2+2p+10p2+6p1852=2×213
p26p+18

8p60=413p26p+18
2p15=13(p26p+18

Again squaring both sides 
(2p15)2=13(p26p+18)
4p260p+225=13p278p+234
13p278p+2344p2+60p225=0
9p218p+9=0
p22p+1=0
(p1)2=0p1=0
so p=1

Question 9

Ans: Points are (5,2),B(1,2) and C(x,4)
 Now AB=(51)2+(2+2)2=(6)2+(4)2=36+16=52BC=(1x)2+(242)=(1x)2+(6)2=(1x)2+36
if AB=BC
so 52=(1x)2+36
Squaring both sides
52=(1x)2+36(1x)2=5236=16
1+x2+2x=16x2+2x+116=0
x2+2x15=0
x2+5x3x15=0
x(x+5)3(x+5)=0
(x+5)(x3)=0
Either x+5=0 then x=5
or x3=0, then x=3
Hence x=3,5

Question 10

Ans: We know that a triangle 
Is an isosceles if any two sides are equal ,
Now P(2,0),Q(6,0) and R(4,4)
Now PQ=(62)2+(00)2=42+02=16+0=16=4
QR=(6412+(04)2=(2)2+(4)2
=4+16=20
RP=(42)2+(40)2=(2)2+(4)2
=4+16=20
if QR=RP=20
So PQR is an isosceles triangle.

Question 12

Ans:(i) points are A(0,4)B(2,5)C(3,3)
AB=(x2x1)2+(y2y1)2=(20)2+(54)2=(2)2+(1)2=4+1=5
Similarly BC=(32)2+(35)2
=(1)2+(2)2+1+4=5
and CA=(03)2+(4312=(3)2+(1)2=9+1=10
We see that AB = BC = 5
So it is an isosceles triangle 
And AB2+BC2=(5)2+(5)2=5+5=10
and CA2=(10)2=10
if AB2+BC2=CA2
So it is  an isosceles right angle 
Area  of ABC=12AB×BC
=125×5=52=2.5 square units

(ii)points are A(3,5),B(1,1),C(5,3) and D(7,7)
AB=(x2x1)2+(y2y1)2=(13)2+(15)2=(2)2+(4)2=4+16=20
BC=(3+)2+(31)2=(4)2+(2)2=16+4=20CD=(75)2+(73)2=(2.12+(4)1=4+16=20
DA=(37)2+(57)2
=(4)2+(2)2=16+4=20
we see that AB=BC=CD=DA
So ABCD is a rhombus or a square 
Not diagonal AC = (53)2+(35)2
=(2)2+(2)2=4+4=8
and dingonal BD =(71)2+(71)2
=(6)2+(6)2=36+36=72
If Diagonals are not equal 
So it is a rhombus not a square 
Not area of rhombus ABCD= 12 product of Diagonals 
=128×72
=12576
=12×24=12sq. units

Question 13

Ans: (i) Points are A(1,5),B(3,5) C (2,3 )
Now AB=(x2x1)2+(y2y1)2
=(31)2+(33)2=(2)2+(0)2
=4+0=4=2

Similarly BC = (23)2+ 23 - 32
=(1)2+(13)2=1+3=4=2
and CA=(12)2+(323)2
=(1)2+(3)2
=1+3=4=2
We see that AB = BC = CA=2
So ABC is an equilateral triangle

(ii) points A(1.1)B(1,1)C (-3 ,3)
Now AD=(x2x1)2+(y2y1)2=(11)2+(11)2
=(2)2+(2)2=4+4=8
similarly BC=[53(1)]2+[3(1]2
=(3+1)2+(3+1)2
=(3+125+3+1+23)=8
We see that AB = BC = CA = 8
So ABC is an equilateral triangle.

Question 14

Ans: Let the vertices be A(2,61)(5,3),C(1,11) and D(8,8)
AB=(x2x1)2+(y2y1)2=(5(2))2+(36)2=(5+2)2+(36)2=(7)2+(3)2=49+9=58 similanly BC=(15)2+(113)2
=(6)2+(14)2
=36+196=232
CD=[8(11]2+[8(11)]2
=(8+1)2+(8+11)2
=(7)2+(3)2=49+19=58
OA=2(8)2+[6(8)]2=(2+8)2+(6+8)2=(6)2+(14)2=36+196=232
We see that AB = CD and AD = BC 
So ABCD is a rectangle 

Question 15

Ans: Center of the circle is origin 0(0,0) and length of the radius of the circle =10 units
(i) Now distance between (0,0) and (6,81
=(x2x1)2+(y2y1)2=(60)2+(80)2=(6)2+(8)2=36+64=100=10
So This point (6,8) lies on the circle

(ii) Similarly distance between (0,0) and (0,11)
=(00)2+(110)2=(0)2+(11)2=0+121=121=11 is 11>10
so This point is outside the circle

(iii) Distance between (0,0) and (10,10)
=(100)2+(00)2=(10)2+1012=100+0=100=10
 so This point lies on the circle

(iv) Distance between (0,0) and (7,7)
=(70)2+(7012=(7)2+(7)2=49+49=98
So 98<10
So This point is inside the circle

(v) Distance between (0.0) and (9,+1
=(90)2+(40)2=(9)2+(4)2=81+16=97 if 97<10
So This point is inside the circle 

Question 16

Ans: if the point p(2,5) is mapped into point p' in the x-axis
So The co- ordinates of p' will be (2,5)
If the point is (3,7) is mapped to 81 in the origin 
so co-ordinates of Q will be (3,71
Now length of PQ=(x2x1)2+(y2y1)2
=(32)2+(7(5)]2=(1)2+(7+5)2=(1)2+(12)2=1+(44=145 units  and pθ)=(32)2+(7,32
=(5)2+(12)2
=25+144=169=13 units

Question 17

Ans: Co-ordinates of points P and Q are (4,1) and (2,0) respectively.

(i) p' is the image of p(4,1) under reflection in y.ary is as so co-ordinates of p' will be (4,1)
(ii) The line joining the point  p and p' is parallel to to x- axis at a distance of 1 on the positive of side y-axis

If Q' is the image of Q(2,0) in the line pp' 
So (2,2xy) or 2(2×10) or (2,201 or (2,2)
(iii)
v0=(x2x1)2+(y2y1)2=[2(4)2+(21)2=(2+4)2+π)2=(6)2+(112=36+1=37 units 

Question 18

Ans:  A(5,1) in the center of circle Radius as the circle of =13 units ABPQ where PQ is a chord al the circle Co-ordinates of D are (2,3)
if ABPQ
So B is the mid-point of PQ

(i) 
Now AD =(x2x1)2+(y2y1)2=(25)2+(31)2=(3)2+14)2=9+16=25=5 units 

(ii) APB.
AP2=AB2+PB2(13)2=(5)2+PB2
=169=25+PB2PB2=16925=144
=(12)2
So PB=12 units
























No comments:

Post a Comment

Contact Form

Name

Email *

Message *