TEST
Question 1
Ans:
A=30∘ and B=cosA+cosB L.HS =sinA+sinB=sin30∘+sin60∘=12+√32=1+√32
R.HS =cos30∘+cos60∘
=√32+12=1+√32
So L.H.S. = R.H.S
L.HS tanA+tanB=tan30∘+tan60∘
=1√3+√3=1+3√3=4√3
L.H.S tanA+tanB=tan30∘+tan60∘
=1√3+√3=1+3√3=4√3
So L.H.S = R.H.S
So both I and II are correct(c)
Question 2
Ans: cot15∘cot20∘cot70∘cot75∘
=cot(90∘−75∘)cot(90∘−70∘)cot70∘coc75∘=tan75∘tan70∘cot70∘cot75∘=tan75∘×cot75∘tan70∘×cot70∘=1×1=1
Option (c) is correct
Question 3
Ans: (i) Sin 3A = Cos (A- 2) , 3A and (A- 2) are acute angles
Sin 3A = Cos (A- 2) =Sin {90∘−A+2∘}
Comparing both sides,
3A=90∘−A+2∘⇒3A+A=92∘⇒4A=92∘⇒A=92∘4=23∘ So A=23∘
Option b is correct
(ii) sin(x−2y)=cos(4y−x)
sin(x−2y)=sin(90∘−4y+x)
comparing
x−2y=90∘−4y+x4y−2y=90∘⇒2y=90∘⇒y=45∘
Now cot2y=cot(2×45∘)=cot90∘
Not defined (d)
Question 5
Ans : In △ABC,∠ABC=90∘,∠ACB=30∘,AD=5 cm
(IMAGE TO BE ADDED)
(i)sin30∘=ADAC
=12=5AC
⇒AC=2×5=10 cm
(IMAGE TO BE ADDED)
(ii) tanA+tanB
=uv+v4=y2+v2w
But w2=u2+v2
So w2uv (d)
Question 6
(IMAGE TO BE ADDED)
(i) cotA=815
So In right △ABC
cotA=ACBC=815
So AC=8,BC=15
Then AB2=AC2+BC2=82+152
Then AB2=AC2+BC2=82+152
=64+225=289=(17)2
So AB=17
cosA=ACAD=817
Now √1−cosA1+cosA
=√1−8171+817=√17−81717+817=√9172517
=√917×1725=√925=35 (c)
(ii)(IMAGE TO BE ADDED)
sinA=√x−12x=BCAB=√x−1√2x
In the △ABC
BC=√x−1AB=√2x
So AC2=AB2−BC2=(√2x)2−(√x−1)2=2x−(x−1)=2x−x+1=x+1
So AC=√x+1
Now tanA=BCAB=√x−1√x+1
=√x−1x+1
Question 7
Ans:
sin360∘cot30∘−2sec245∘+3cos60∘tan45∘−tan260∘=(√32)2×√3−2(√2)2+3×12×1−(√3)2=3√38×√3−2×2+32−3=98−4+32−3=98+32−7=9+128−7=218−7=21−568=−358 (b)
Question 8
Ans: x+y=90∘,sinxsiny=√31
y=91−x∘
sinxsin(90∘−x=√31
⇒sinxcosx=√31+anx=√3
⇒tanx=tan60∘
so x=60∘
and y=90∘−60∘=30∘
so x:y=60∘:30∘
⇒x=y=2:1
(ii)
sinx=cosy=x and y are acute angle sinx=cosy=sin(90∘−y) so x=90∘−yx+y=90∘=π2
Question 9
Ans: 5sin75∘sin77∘+2cos13∘cos15∘cos15∘sin77∘−7sin81∘sin9∘
=5sin75∘sin77∘+2cos(90∘−77∘)⋅cos(90∘−75∘)cos15∘sin77∘ -7sin81∘cos(90∘−81∘)
=5sin75∘sin77∘+2sin77∘sin75∘sin75∘sin77∘−7sin81∘cos81∘
=7sin75∘sin77sin75∘sin77∘−7=7−7=0 (b)
(ii)cos2π8+4cos2π7−secπ3+5tan2−π3+sin2π8
⇒cos245∘2+4cos245∘−sec60∘+5tan260∘+sin2458
=(sin245∘2+cos245∘2)+4(1√2)2−2+5(√3)2
=1+4×12−2+15
=16+2−2=18−2=16 (C)
Question 10
(IMAGE TO BE ADDED)
Sol: In the given figure
A rockets is launcher from p 20 km to then 80 km to B making an angle of 30 with PA.
We have to find pc from A draw AD||PC, Then
AD = PC
Then ∠BAD=90∘−30∘=60∘
cosθ=ADAB⇒cos60∘=ADAD
⇒12=PClo=PC=802=40 km
and sin60∘=BDAB⇒√32=BD80⇒BD=80√32=40√3 km So BC=BD+DC=BD+AP=(40√3+20)km
No comments:
Post a Comment