Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 19 Trigonometric Ratios TEST

  TEST

Question 1

Ans: 
A=30 and B=cosA+cosB L.HS =sinA+sinB=sin30+sin60=12+32=1+32
R.HS =cos30+cos60
=32+12=1+32
So L.H.S. = R.H.S
L.HS tanA+tanB=tan30+tan60
=13+3=1+33=43
L.H.S tanA+tanB=tan30+tan60
=13+3=1+33=43
So L.H.S = R.H.S 
So both I and II are correct(c) 

Question 2

Ans: cot15cot20cot70cot75
=cot(9075)cot(9070)cot70coc75=tan75tan70cot70cot75=tan75×cot75tan70×cot70=1×1=1
Option (c) is correct 

Question 3

Ans: (i) Sin 3A = Cos (A- 2) , 3A and (A- 2) are acute angles 
Sin 3A = Cos (A- 2) =Sin {90A+2}
Comparing both sides, 
3A=90A+23A+A=924A=92A=924=23 So A=23

Option b is correct 

(ii) sin(x2y)=cos(4yx)
sin(x2y)=sin(904y+x)
comparing
x2y=904y+x4y2y=902y=90y=45
Now cot2y=cot(2×45)=cot90
Not defined (d)

Question 5

Ans : In ABC,ABC=90,ACB=30,AD=5 cm
(IMAGE TO BE ADDED)
(i)sin30=ADAC
=12=5AC
AC=2×5=10 cm

(IMAGE TO BE ADDED)
(ii) tanA+tanB
=uv+v4=y2+v2w
But w2=u2+v2
So w2uv (d)

Question 6

(IMAGE TO BE ADDED)
(i) cotA=815
So In right ABC
cotA=ACBC=815
So AC=8,BC=15
Then AB2=AC2+BC2=82+152
Then AB2=AC2+BC2=82+152
=64+225=289=(17)2
So AB=17
cosA=ACAD=817
Now 1cosA1+cosA
=18171+817=1781717+817=9172517
=917×1725=925=35 (c)

(ii)(IMAGE TO BE ADDED)
sinA=x12x=BCAB=x12x
In the ABC
BC=x1AB=2x
So AC2=AB2BC2=(2x)2(x1)2=2x(x1)=2xx+1=x+1
So AC=x+1
Now tanA=BCAB=x1x+1
=x1x+1

Question 7

Ans: 
sin360cot302sec245+3cos60tan45tan260=(32)2×32(2)2+3×12×1(3)2=338×32×2+323=984+323=98+327=9+1287=2187=21568=358 (b) 

Question 8

Ans: x+y=90,sinxsiny=31
y=91x
sinxsin(90x=31
sinxcosx=31+anx=3
tanx=tan60
so x=60
and y=9060=30
so x:y=60:30
x=y=2:1

(ii)
 sinx=cosy=x and y are acute angle sinx=cosy=sin(90y) so x=90yx+y=90=π2

Question 9

Ans: 5sin75sin77+2cos13cos15cos15sin777sin81sin9
=5sin75sin77+2cos(9077)cos(9075)cos15sin77 -7sin81cos(9081)
=5sin75sin77+2sin77sin75sin75sin777sin81cos81
=7sin75sin77sin75sin777=77=0 (b)

(ii)cos2π8+4cos2π7secπ3+5tan2π3+sin2π8
cos2452+4cos245sec60+5tan260+sin2458
=(sin2452+cos2452)+4(12)22+5(3)2
=1+4×122+15
=16+22=182=16 (C)

Question 10

(IMAGE TO BE ADDED)
Sol: In the given figure
A rockets is launcher from p 20 km to then 80 km to B making an angle of 30 with PA. 
We have to find pc from A draw AD||PC, Then 
AD = PC
Then BAD=9030=60
cosθ=ADABcos60=ADAD
12=PClo=PC=802=40 km
and sin60=BDAB32=BD80BD=8032=403 km So BC=BD+DC=BD+AP=(403+20)km

















































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *