Exercise 19 D
Question 1
Ans:(i) sin16∘cos74∘=sin16∘cos(90∘−16∘)
=sin16∘sin16∘=1
(ii) cos25∘sin65∘=cos25∘sin(90∘−25∘)
=cos25∘cos25∘=1
(iii)
tan38∘cot52∘=tan38∘cot(90∘−38∘)=tan38∘tan38∘=1 (iv) sec62∘cosec28∘=sec62∘cosec(90∘−62∘)
=sec62∘sec62∘=1
Question 2
Ans:(i)
sin267∘+sin223∘=sin267∘+sin2(90∘−67∘)=sin267∘+cos267∘
(ii) (sin49∘cos41∘)2+(cos41∘sin49∘)2
=(sin49∘cos(90∘−49∘))2+(cos41∘sin(90∘−41∘))2
=(sin49∘sin49∘)2+(cos41∘cos41∘)2=(112+(1)2
=1+1=2
(iii) cos220∘+cos270∘sin259∘+sin231∘
=cos2(90∘−70∘)+cos270∘sin259∘+sin2(90∘−5902)
=sin270∘+cos270∘sin259∘+cos259∘
=11=1
(iv) cos70∘sin20∘+cos59∘sin31∘−8sin230∘
=cos(90∘−20∘)sin20∘+cos(90∘−31∘)sin31∘−8(sin30∘)2
=sin20∘sin20∘+sin31∘sin31∘−8(12)2
=1+1−8×14=2−2=0
(v) 2tan33∘coc97∘−cot80∘tan10∘
=2tan(90∘−37∘)cot37∘−cot80∘tan(90∘−80∘)
=2cot37∘cot3∘−cot80∘cot80∘
=2×1−1=2−1=1
(vi) sec50∘sin40∘+cos40∘cosec50∘
sin40∘cos50∘+cos40∘sin50∘=sin40∘cos(90∘−40∘)+cos40∘sin(90∘−40∘)=sin40∘sin40∘+cos40∘cos40∘=1+1=2
(vii)
cos80∘sin10∘+cos59∘cosec31∘=cos80∘sin(10∘)+cos59∘sin31∘=cos80∘sin(90∘−80∘)+cos59∘sin(90∘−59∘)=cos80∘cos80∘+cos59∘cos59∘
=1+1=2
(viii)
2sin43∘cos47∘−cot30∘tan60∘−√2sin45∘=2sin43∘cos(90∘−43∘)−cot(90∘−60∘)tan60∘−√2×1√2=2sin43∘sin43∘−tan60∘tan60∘−√2×1√2=2×1−1−1=2−2=0
(ix) cos220∘+cos270∘sin220∘+sin270∘+sin264∘+cos64∘sin26∘
=cos2(90∘−70∘)+cos270∘sin220∘+sin2(90∘−20∘) +sin264+cos610sin(90∘ -64^{\circ}$
=sin270∘+cos270∘sin220∘+cos220∘+sin264∘+cos64∘⋅cos64∘
=11+(sin264∘+cos264∘)
=1+1=2
Question 3
Ans: Using sin (90∘−θ)cosec(90∘−θ) and cot(90∘−θ)
(i) cosec69∘+cot69∘
=cosec(90∘−21∘)+cot(90∘−21∘)=sec21∘+tan21∘
(ii)
sin85∘+cosec85∘=sin(90∘−5∘)+cosec(90∘−5∘)=cos5∘+sec5∘
Question 4
Ans:
(i)
tan(90∘−A)cosecA=cosA L.H.15. =tan(90∘−A)cosecA=cotAcosecA=cosA×sinAsinA×1=cosA= R.HS
(ii)cosθsin(90∘−θ)+sinθcos(90∘−θ)=2
LHS =cosθsinθ(90∘−θ+sinθcos(90∘−θ)
=cosθcosθ+sinθsinθ
=1+1=2= R.H.S
(iii)sec(90∘−θ)cosec(90∘−θ)=sec2θcocθ
LH.S =sec(90∘−θ)cosec(90∘−0)
=cosecθsecθ
R⋅H⋅S=sec2θcotθ=sec2θ×cosθsinθ
=secθ×secθ×cosθsinθ =secθ×1sinθ
=secθcosecθ=cosecθsecθ
so L.H.S =RH.S
(iv)sin(60∘−θ)=cos(30∘+θ)
LR.S =sin(60∘−θ)=sin{90∘−(30∘+θ)}
=cos(30∘+θ)
= RHS
(v) sin0sin(90∘−θ)+cosθcos(90∘−0)=sec(90∘−0)
cosec(90∘−θ)
L.H.S =sinθsin(90∘−θ)+cosθcos(90∘−0)
=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ
=cosecθsecθ
RHS =sec(90∘−θ)cosec(90∘−θ)
=cosecθsecθ
So L.H.S. = R.H.S
(vi)cos(81∘+θ)=sin(9∘−θ)
LHS=cos(81∘+θ)=cos{(90∘−9∘)+θ}=cos[90∘−(9∘−θ)}=sin9∘−θ=R.HS⋅{cos(90∘−θ)=sinθ}
Question 5
Ans: (i) sin(θ+36∘)=cosθ
⇒sin(θ+36∘)=sin(90∘−θ) {sin(90∘−θ)=cosθ}
So θ+36∘=90∘−θ⇒θ+θ=90∘−36∘
=20=54∘⇒θ=54∘2=27∘
So θ=27∘
(ii) sin50=cos40
⇒sin50=sin(90∘−40) {cosθ = sin (90 -θ)}
So 5.= 90 -40= 50 +40 =90
⇒30=90∘⇒θ=90∘9=10∘
So θ =10∘
(iii)
sin3A=cos2Asin3A=sin(90∘−2A){cos0=sin(90∘−0)}
So 3A=90∘−2A⇒3A+2A=90∘
⇒5A=90∘⇒A=90∘5∘=18∘
So A=18∘
No comments:
Post a Comment