Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 19 Trigonometric Ratios Exercise 19(D)

   Exercise 19 D 

Question 1 

Ans:(i) sin16cos74=sin16cos(9016)
=sin16sin16=1

(ii) cos25sin65=cos25sin(9025)
=cos25cos25=1

(iii)
tan38cot52=tan38cot(9038)=tan38tan38=1 (iv) sec62cosec28=sec62cosec(9062)
=sec62sec62=1

Question 2 

Ans:(i)
sin267+sin223=sin267+sin2(9067)=sin267+cos267

(ii) (sin49cos41)2+(cos41sin49)2
=(sin49cos(9049))2+(cos41sin(9041))2
=(sin49sin49)2+(cos41cos41)2=(112+(1)2
=1+1=2

(iii) cos220+cos270sin259+sin231
=cos2(9070)+cos270sin259+sin2(905902)
=sin270+cos270sin259+cos259
=11=1

(iv) cos70sin20+cos59sin318sin230
=cos(9020)sin20+cos(9031)sin318(sin30)2
=sin20sin20+sin31sin318(12)2
=1+18×14=22=0

(v) 2tan33coc97cot80tan10
=2tan(9037)cot37cot80tan(9080)
=2cot37cot3cot80cot80
=2×11=21=1

(vi) sec50sin40+cos40cosec50
sin40cos50+cos40sin50=sin40cos(9040)+cos40sin(9040)=sin40sin40+cos40cos40=1+1=2

(vii) 
cos80sin10+cos59cosec31=cos80sin(10)+cos59sin31=cos80sin(9080)+cos59sin(9059)=cos80cos80+cos59cos59
=1+1=2

(viii)
 2sin43cos47cot30tan602sin45=2sin43cos(9043)cot(9060)tan602×12=2sin43sin43tan60tan602×12=2×111=22=0

(ix) cos220+cos270sin220+sin270+sin264+cos64sin26
=cos2(9070)+cos270sin220+sin2(9020) +sin264+cos610sin(90 -64^{\circ}$
=sin270+cos270sin220+cos220+sin264+cos64cos64
=11+(sin264+cos264)
=1+1=2

Question 3

Ans: Using sin (90θ)cosec(90θ) and cot(90θ)
(i) cosec69+cot69
=cosec(9021)+cot(9021)=sec21+tan21

(ii) 
sin85+cosec85=sin(905)+cosec(905)=cos5+sec5

Question 4

Ans: 
(i) 
tan(90A)cosecA=cosA L.H.15. =tan(90A)cosecA=cotAcosecA=cosA×sinAsinA×1=cosA= R.HS 

(ii)cosθsin(90θ)+sinθcos(90θ)=2
LHS =cosθsinθ(90θ+sinθcos(90θ)
=cosθcosθ+sinθsinθ
=1+1=2= R.H.S

(iii)sec(90θ)cosec(90θ)=sec2θcocθ
LH.S =sec(90θ)cosec(900)
=cosecθsecθ
RHS=sec2θcotθ=sec2θ×cosθsinθ
=secθ×secθ×cosθsinθ =secθ×1sinθ
=secθcosecθ=cosecθsecθ
so L.H.S =RH.S

(iv)sin(60θ)=cos(30+θ)
LR.S =sin(60θ)=sin{90(30+θ)}
=cos(30+θ)
= RHS

(v) sin0sin(90θ)+cosθcos(900)=sec(900)
cosec(90θ)
 L.H.S =sinθsin(90θ)+cosθcos(900)
=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ
=cosecθsecθ
RHS =sec(90θ)cosec(90θ)
=cosecθsecθ
So L.H.S. = R.H.S

(vi)cos(81+θ)=sin(9θ)
LHS=cos(81+θ)=cos{(909)+θ}=cos[90(9θ)}=sin9θ=R.HS{cos(90θ)=sinθ}

Question 5

Ans: (i) sin(θ+36)=cosθ
sin(θ+36)=sin(90θ) {sin(90θ)=cosθ}
So θ+36=90θθ+θ=9036
=20=54θ=542=27
So θ=27

(ii) sin50=cos40
sin50=sin(9040) {cosθ = sin (90 -θ)}
So 5.= 90 -40= 50 +40 =90
30=90θ=909=10
So θ =10

(iii) 
sin3A=cos2Asin3A=sin(902A){cos0=sin(900)}
So 3A=902A3A+2A=90
5A=90A=905=18
So A=18
















































No comments:

Post a Comment

Contact Form

Name

Email *

Message *