Exercise 19 B
Question 1
Ans: (IMAGE TO BE ADDED)
tanθ=512= perpendicular Base
In the △ABC,∠B=90∘
AB=12:BC=5, then AC2=AB2+BC2
=(12)2+(s)2=144+25=169=(13)2
So AC=13
Now sinθ= perpendicular Hypotenuse =BC1AC=513 and cosθ= Bare Hypotenuse =ABAC=1213
Question 2
Ans: (IMAGE TO BE ADDED)
sinθ=35= Perpendicular Hypotenuse =ACAB
So In △ABC
AC=3.AB=5
Now AB2=BC2+AC3⇒(5)2=BC2+(3)2⇒BC2=(5)2−(3)2=25−9=16=(4)2
So BC=4
(i) cosθ= Base Hypotenuse =BCAB=45
(ii) and tanθ= perpendicular Base =ACBC=34.
Question 3
Ans: (IMAGE TO BE ADDED)
(i) In right is ABC,∠A=90∘
AB=7 cm,AC=24 cm
So
BC2=AB2+AC2=(7)2+(24)2=49+576=625=(25)2
So
BC=25 cm Now tanB=ACAB=247tanC=ABAC=724sinB=ACBC=2425sinC=ABBC=725cosB=ABBC=725cosC=ACBC=2425
(ii) (IMAGE TO BE ADDED)
In ∠ABC,∠A=90
So AB=12 cm,AC=9 cmBC2=AB2+AC2=(12)2+(9)2=144+81=225=(15)2
So BC=15 cm
Now tanB=ACAB=129 or 43
tanC=ABAC=912 or 34
sinB=ACBC=915 or 35
sinC=ABBC=1215 or 45
cosB=ABBC=1215 or 45
cosC=ABBC=915 or 35
Question 4
Sol: (IMAGE TO BE ADDED)
(i) In △PQR,∠R=90∘
- PQ=10 cm,QR=8 cm
PQ2=QR2+PR2(10)2=(8)2+PR2⇒100=64+PR2.⇒PR2=100−64=36=(6)2
So PR=6 cm
tanP=QRPR=86 or 43
tanθ=PRQR=68 or 34
sinP=QRPQ=810 or 45
sinθ=PRPQ=610 or 35
cosP=PRPQ=610 or 35−
cosθ=QRPQ=810 or 45
(ii)(IMAGE TO BE ADDED)
In △PQR,∠R=90∘
PQ=29 mm,PR=21 mm
So
PQ2=PR2+QR2(29)2=(21)2+QR2⇒841=441+QR2⇒QR2=841−441=400=(20)2
so QR=20 mm
Now
tapP=QRPR=2021,tanθ=PRQR=2120
sinP=QRPQ=2029sinθ=PRPQ=2129
cosP=PRPQ=2129,cosθ=QRPQ=2029
(iii)(IMAGE TO BE ADDED)
In △PQ,∠R=90∘
PQ=37 cm,PR=3.5 cm
Bu+PQ2=PR2+QR2
⇒(3.7)2=(3.5)2+QR2
⇒13.69=12.25+QR2
QR2=13.69−12.25
=1.44=(1.2)2
So QR=1.2 cm
Now
tanp=QRPR=1.23.5=1235
tanθ=PRQR=3.512=3512
sinP=QRPQ=1.23.7=1237,sinθ=PRPQ=3.53.7=3537
cosP=PRPQ=3.53.7=3537,cosθ=QRPQ=1.23.7=1237
Question 5
Ans: (image to be added)
In △ABC,∠A=θ and ∠B=90∘
So sinθ=BCCA and cosθ=ABCA
If ABC is a right angled triangle
So CA2=AB2+BC2… (i)
Now, sin2θ+cos2θ=(BCCA)2+(ABCA)2=BC2CA2+AB2CA2=BC2+AB2CA2=CA2CA2
=1
Hence sin2θ+cos2θ=1
Question 6
Ans: In rhombus ABCD Diagonals AC and BD bisect each other at O at right angles
So AO = OC and BO = OD
and ∠AOB=∠BOC=∠COD=∠DOA=90∘
if AC=6 units and BD=8 units
So AO=OC=62=3 units and BO=00=32 =4 units
Now in right △DOC
DC2=D02+0C2=(4)2+(3)2=16+9=25=(5)2
So DC=5 units
Now sin∠OCD=ODDC=45
Question 7
Sol: (IMAGE TO BE ADDED)
In △ABC,∠B=90∘ and ∠A=θ
cosθ=0.6=610=35=ABCAsoAB=3,CA=5
Now
CA2=AB2+BC2
⇒(5)2=(3)2+BC2⇒25=9+BC2
⇒BC2=25−9=16=(4)2
So BC=4
So sinθ=BCCA=45 and tanθ=BCAB=43
Now 5sinθ−3tanθ=5×45−3×43
=4−4=0
Question 8
Ans : Let ABC is a right triangle in which ∠A is an acute angle ∠B=90∘
(IMAGE TO BE ADDED)
tanA=BCAB=34
So BC=3,AB=4
But AC2=AD2+BC2
=(4)2+(3)2=16+9=25=(512
So AC=5
Now cosA=ABAC=45 or 0.8
Question 9
Sol: (IMAGE TO BE ADDED)
In ABC,∠B=90∘ and ∠A=0
sinθ=610=BCAC
So BC=6AC=10 But AC2=AB2+BC2(10)2=AB2+(6)2⇒100=AB2+36
⇒AB2=100−36=64
⇒AB2=64=(8)2
So AB=8
Now cosθ=ABAC=810=45
and tanθ=BCAB=68=34
So cosθ+tanθ=45+34
=16+1520=3120=11120
Question 10
Ans: (a) In the figure,
(i) tanθ= Perpendicular Base =ABBC
tanθ=BCAB is false
(ii) secθ= HypotenuseBasc=ACBC
so secθ=BCAC is false
(b) AB:BC=sinA:cosA
Now, sinA:cosA=sinAcosA=tanA
= Perpendicular Base =BCAB
=BC:AB
So AB:BC=sinA:cosA is false
Question 11
Ans: (IMAGE TO BE ADDED)
(a) (i) sinϕ=CDBC=513
Draw DE 110C So that
(ii)
BO=BC=12 and ED=DC=5 So AE=AB−EB=14−5=9 Now tanθ=DEAE=129=43
(b) In right △AED
AD2=AE2+ED2
=(9)2+(12)2=81+144
=225=(15)2
So AD=15
sinθ=DEAD⇒AD=DEsinθ=12sinθ
and cosθ=AEAD⇒AD=AEcosθ=9cosθ
So AD=12sinθ or 9cosθ
Question 12
Ans: In △ABC,∠B=90∘∠C=0
AB=2,BC=1 units
But AC2=BC2+AB2
=(1)2+(2)2=1+4=5
So AC=√5
Now sinθ=ABAC=2√5 and tanθ=ABBC=21
So sin2θ+tan2θ=(2√5)2+(21)2=45+41
=4+205=245=445
Question 13
Ans: (i) In △ABC,∠A=0 and ∠B=90
(IMAGE TO BE ADDED)
sinθ=1213=BCAC
So BC=12 and AC=13
ButAC2=AB2+BC2
⇒(13)2=AB2+(12)2
⇒169=AB2+144
⇒AB2=169=144=25=(5)2
So AB=5
Now cosθ=ABAC=513
and tanθ=BCAD=125
So
cosθ+tanθ=513+125=25+15665=18165=25165
(ii) (IMAGE TO BE ADDED)
In △ABC,∠A=0,∠B=90∘
cosθ=1213=ABAC
So AB=12,AC=13B ut AC2=AB2+BC2⇒(13)2=(12)2+BC2⇒169=144+BC2⇒BC2=169−144=25=(5)2 so BC=5
Now sinθ=BCAC=513
and tanθ=13CAC=512
and 2sinθ−4tanθ=2×513−4×513
=1013−53
=30−6539=−3539
Question 14
Ans: tanθ−512
Now cosθ−sinθcosθ+sinθ =cosθcosθ−sinθcosθcosθcosθ+sinθcosθ
=1−tanθ1+tanθ=1−5121+512
12−51212+512=7121712
=712×1217=717
Question 15
Ans: 5sinθ=4⇒sinθ=45
Now 1+sin01−sin0=1+451−45=5+455−45
=9515=95×51=9
Question 16
Ans: btanθ=a⇒tanθ=ab
Now cosθ+sinθcosθ−sinθ=cosθcosθ+sinθcosθcosθcosθ−sinθcosθ
=1+tanθ1−tanθ=1+ab1−ab
=b+abb−ab=b+ab×bb−a
=b+ab−a
Question 17
Ans: 5tanθ=4⇒tanθ=45
Now 5sinθ−3cosθ5sinθ+2cosθ=5sinθcosθ−3cosθcosθ5sinθcosθ+2cosθcosθ
=5tanθ−35tanθ+2
=5×43−35×45+2=4−34+2=16
Question 18
Ans: (image to be added)
13sinA=5⇒sinA=513
In right △ABC,∠B=90∘
sinA=513=BCAC
So BC=5,AC=13
But AC2=AB2+BC2⇒(13)2=AD2+(5)2
⇒169=AB2+25
⇒AB2=169−25=144=(12)2
So AB=12
Now cosA=ABAC=1213 and tanA=BCAB=512
Now 5sinA−2cosAtanA=5×513−2×1213512
2513−2413512=113512=113×125
=1265
Question 19
Ans: 5cosA−12sinA=0
⇒5cosA=12sinA
⇒sinAcosA=512
Now, sinA+cosA2cosA−sinA=sinAcosA+cosAcosA2cosAcosA−sinAcosA
=tanA+12tanA=512+12−512
=5+121224−512=17121912
=1712×1219=1719
No comments:
Post a Comment