Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 19 Trigonometric Ratios Exercise 19(B)

 Exercise 19 B

Question 1

Ans: (IMAGE TO BE ADDED)
tanθ=512= perpendicular  Base 
In the ABC,B=90
AB=12:BC=5, then AC2=AB2+BC2
=(12)2+(s)2=144+25=169=(13)2
So AC=13
 Now sinθ= perpendicular  Hypotenuse =BC1AC=513 and cosθ= Bare  Hypotenuse =ABAC=1213

Question 2

Ans: (IMAGE TO BE ADDED)
sinθ=35= Perpendicular  Hypotenuse =ACAB
So In ABC
AC=3.AB=5
Now AB2=BC2+AC3(5)2=BC2+(3)2BC2=(5)2(3)2=259=16=(4)2
So BC=4

(i) cosθ= Base  Hypotenuse =BCAB=45
(ii) and tanθ= perpendicular  Base =ACBC=34.

Question 3

Ans:  (IMAGE TO BE ADDED)
(i) In right is ABC,A=90
AB=7 cm,AC=24 cm
So 
BC2=AB2+AC2=(7)2+(24)2=49+576=625=(25)2

So
 BC=25 cm Now tanB=ACAB=247tanC=ABAC=724sinB=ACBC=2425sinC=ABBC=725cosB=ABBC=725cosC=ACBC=2425

(ii)  (IMAGE TO BE ADDED)
In ABC,A=90
So AB=12 cm,AC=9 cmBC2=AB2+AC2=(12)2+(9)2=144+81=225=(15)2
 So BC=15 cm
Now tanB=ACAB=129 or 43
tanC=ABAC=912 or 34
sinB=ACBC=915 or 35
sinC=ABBC=1215 or 45
cosB=ABBC=1215 or 45
cosC=ABBC=915 or 35

Question 4

Sol: (IMAGE TO BE ADDED)
(i) In PQR,R=90
- PQ=10 cm,QR=8 cm
PQ2=QR2+PR2(10)2=(8)2+PR2100=64+PR2.PR2=10064=36=(6)2
So PR=6 cm
tanP=QRPR=86 or 43
tanθ=PRQR=68 or 34
sinP=QRPQ=810 or 45
sinθ=PRPQ=610 or 35
cosP=PRPQ=610 or 35
cosθ=QRPQ=810 or 45

(ii)(IMAGE TO BE ADDED)
In PQR,R=90
PQ=29 mm,PR=21 mm
So
PQ2=PR2+QR2(29)2=(21)2+QR2841=441+QR2QR2=841441=400=(20)2
so QR=20 mm
Now
tapP=QRPR=2021,tanθ=PRQR=2120
sinP=QRPQ=2029sinθ=PRPQ=2129
cosP=PRPQ=2129,cosθ=QRPQ=2029

(iii)(IMAGE TO BE ADDED)
In PQ,R=90
PQ=37 cm,PR=3.5 cm
Bu+PQ2=PR2+QR2
(3.7)2=(3.5)2+QR2
13.69=12.25+QR2
QR2=13.6912.25
=1.44=(1.2)2
So QR=1.2 cm
Now
tanp=QRPR=1.23.5=1235
tanθ=PRQR=3.512=3512
sinP=QRPQ=1.23.7=1237,sinθ=PRPQ=3.53.7=3537
cosP=PRPQ=3.53.7=3537,cosθ=QRPQ=1.23.7=1237

Question 5

Ans: (image to be added)
In ABC,A=θ and B=90
So sinθ=BCCA and cosθ=ABCA
If ABC is a right angled triangle
 So CA2=AB2+BC2 (i) 
Now, sin2θ+cos2θ=(BCCA)2+(ABCA)2=BC2CA2+AB2CA2=BC2+AB2CA2=CA2CA2
=1
Hence sin2θ+cos2θ=1

Question 6

Ans: In rhombus ABCD Diagonals AC and BD bisect each other at O at right angles 
So AO = OC and BO = OD 
and AOB=BOC=COD=DOA=90
if AC=6 units and BD=8 units
So AO=OC=62=3 units and BO=00=32 =4 units
Now in right DOC
DC2=D02+0C2=(4)2+(3)2=16+9=25=(5)2
So DC=5 units
Now sinOCD=ODDC=45

Question 7

Sol: (IMAGE TO BE ADDED)
In ABC,B=90 and A=θ
cosθ=0.6=610=35=ABCAsoAB=3,CA=5
Now
CA2=AB2+BC2
(5)2=(3)2+BC225=9+BC2
BC2=259=16=(4)2
So BC=4
So sinθ=BCCA=45 and tanθ=BCAB=43
Now 5sinθ3tanθ=5×453×43
=44=0

Question 8

Ans : Let ABC is a right triangle in which A is an acute angle B=90
(IMAGE TO BE ADDED)
tanA=BCAB=34
So BC=3,AB=4
But AC2=AD2+BC2
=(4)2+(3)2=16+9=25=(512
So AC=5
Now cosA=ABAC=45 or 0.8

Question 9

Sol: (IMAGE TO BE ADDED)
In ABC,B=90 and A=0 
sinθ=610=BCAC
So BC=6AC=10 But AC2=AB2+BC2(10)2=AB2+(6)2100=AB2+36
AB2=10036=64
AB2=64=(8)2
So AB=8
Now cosθ=ABAC=810=45
and tanθ=BCAB=68=34
So cosθ+tanθ=45+34
=16+1520=3120=11120


Question 10

Ans: (a) In the figure,
(i) tanθ= Perpendicular  Base =ABBC
tanθ=BCAB is false

(ii) secθ= HypotenuseBasc=ACBC
so secθ=BCAC is false

(b) AB:BC=sinA:cosA

Now, sinA:cosA=sinAcosA=tanA
= Perpendicular  Base =BCAB
=BC:AB
So AB:BC=sinA:cosA is false

Question 11

Ans: (IMAGE TO BE ADDED)
(a) (i) sinϕ=CDBC=513
Draw DE 110C So that

(ii) 
BO=BC=12 and ED=DC=5 So AE=ABEB=145=9 Now tanθ=DEAE=129=43

(b) In right AED
AD2=AE2+ED2
=(9)2+(12)2=81+144
=225=(15)2
So AD=15
sinθ=DEADAD=DEsinθ=12sinθ
and cosθ=AEADAD=AEcosθ=9cosθ
So AD=12sinθ or 9cosθ

Question 12

Ans: In ABC,B=90C=0
AB=2,BC=1 units
But AC2=BC2+AB2
=(1)2+(2)2=1+4=5
So AC=5
Now sinθ=ABAC=25 and tanθ=ABBC=21
So sin2θ+tan2θ=(25)2+(21)2=45+41
=4+205=245=445

Question 13

Ans: (i) In ABC,A=0 and B=90
(IMAGE TO BE ADDED)
sinθ=1213=BCAC
So BC=12 and AC=13
ButAC2=AB2+BC2
(13)2=AB2+(12)2
169=AB2+144
AB2=169=144=25=(5)2
So AB=5
Now cosθ=ABAC=513
and tanθ=BCAD=125
So 
cosθ+tanθ=513+125=25+15665=18165=25165

(ii) (IMAGE TO BE ADDED)
In ABC,A=0,B=90
cosθ=1213=ABAC
So AB=12,AC=13B ut AC2=AB2+BC2(13)2=(12)2+BC2169=144+BC2BC2=169144=25=(5)2 so BC=5
 Now sinθ=BCAC=513
and tanθ=13CAC=512
and 2sinθ4tanθ=2×5134×513
=101353
=306539=3539

Question 14

Ans: tanθ512
Now cosθsinθcosθ+sinθ =cosθcosθsinθcosθcosθcosθ+sinθcosθ
=1tanθ1+tanθ=15121+512
1251212+512=7121712
=712×1217=717

Question 15

Ans: 5sinθ=4sinθ=45
Now 1+sin01sin0=1+45145=5+45545
=9515=95×51=9

Question 16

Ans: btanθ=atanθ=ab
Now cosθ+sinθcosθsinθ=cosθcosθ+sinθcosθcosθcosθsinθcosθ
=1+tanθ1tanθ=1+ab1ab
=b+abbab=b+ab×bba
=b+aba

Question 17

Ans: 5tanθ=4tanθ=45
Now 5sinθ3cosθ5sinθ+2cosθ=5sinθcosθ3cosθcosθ5sinθcosθ+2cosθcosθ
=5tanθ35tanθ+2
=5×4335×45+2=434+2=16

Question 18

Ans: (image to be added)
13sinA=5sinA=513
In right ABC,B=90
sinA=513=BCAC
So BC=5,AC=13
But AC2=AB2+BC2(13)2=AD2+(5)2
169=AB2+25
AB2=16925=144=(12)2
So AB=12
Now cosA=ABAC=1213 and tanA=BCAB=512
Now 5sinA2cosAtanA=5×5132×1213512
25132413512=113512=113×125
=1265

Question 19

Ans: 5cosA12sinA=0
5cosA=12sinA
sinAcosA=512
Now, sinA+cosA2cosAsinA=sinAcosA+cosAcosA2cosAcosAsinAcosA
=tanA+12tanA=512+12512
=5+121224512=17121912
=1712×1219=1719



























No comments:

Post a Comment

Contact Form

Name

Email *

Message *