Exercise 19 A
Question 1
Ans: θ= perpendicular Bare cosθ= base Hypotenuse sinθ= perpendicular Hypotenuse cotθ=1tanθ= Base [Perpendicular secθ=1cosθ= Hypotenuse Bare ard cosecθ=1sinθ= Hypotenuse Perpendicular
Now, we shall complete the give
(IMAGE TO BE ADDED)
Question 2
Ans: AB=5,BC=12 and hyp. . AC=13 and ∠ACB=θ
So sinθ=ABAC=513cosθ=BCAC=1213tanθ=ABBC=512sin2θ=|513|2=25159cos2θ=|1215|2=144169tan2θ=(512)2=25144
Question 3
Ans: ∠ABC=θ and ∠C=90∘
AB=5⋅BC=3 and AC=4
So tanθ=ACBC=43
tan2θ=(43)2=169
tan3θ=(43)2=6427
if sinθ=ACAB=45
So sin3θ=(45)2=64125
and cosθ=DCAB=35
So cos3θ=(35)3=27125
Question 4
Ans: In the Figure
∠ OMP, ∠ORO and ∠OOM
(a) sinRQM=RMQM (b) sinQMP=POPM
(c) sinOQK=OROQ (d) \CosQmP=QMPm
(e) tanRQm=RmQR (f) \Cot MOP =ommp
(g) SecROQ=OQOR.
No comments:
Post a Comment