Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 17 Circle, Circumference and Area Exercise 17(A)

Exercise 17 A

Question 1

Ans:1  (i) Diameter of the circle (d)=4 cm so circumference =πd=227×49=154 cm

(ii) Diameter of the circle (d)=14 cm So Circumference =πd=227×14=44 cm

(iii) Diameter of the circle (d) =9.8 cm So circumference =πd=227×9.8=30.8 cm

(iv) D=7 cm
So Circumference =πd=227×7=22 cm

Question 2

Ans: (i) Radius of the circle (r)=7 cm
So circumference =2πr=2×227×7=44 cm

(ii) (r)=28 cm
So circimference =2πr=2×227×28=176 cm

(iii) (R)=3.5 cm
so circumference =2πr=2×227×3.5=22 cm

(iv) (r)=98 m
so circumference =2πr=2×227×98 m=616 m

Question 3

Ans:(i) Radius (r)=4.5 cm circumference =2πr=2×3.14×4.5 =28.26 cm=28.3 cm

(ii)
  (d) =15 cm so  circumference =πd=3.14×15 cm=47.10=47.1 cm

Question 4

Ans: (i) circumference =22 cm
Let of be the diameter of the circle
So d= circumference π=22227=22×722=7 cm
so Diameter =7 cm

(ii)
 circumference =8.8 cm so  Diameter = circumference π=8.8227=8.8×722=0.4×7=2.8 cm

(iii) circumference =44 cm
 so D= circum furence π=14227=44×722=14 cm

Question 5

Ans : (i)circumference =100 m
let the radius of the circle =r
 So 2πr=1002×3.14×r=100r=1002×3.14=100×1002×314=10000628=15.92=15.9 m So  Radius =15.9 m

(ii) circumference =6.4dm
Let radius of the circle =r
 Then. 2πr=6.42×3.14×r=6.46.28r=6.4r=6.46.28r=1.019=1.02dm So r=1.02dm

Question 6

Ans: 
 Diameter of Venus planet =12.278 km so circumference =πd=227×12278=22×1754=38588 km

Question 7

(i) Radius of the semicircle =3.85 cm

(IMAGE TO BE ADDED)

So perimeter =πr+2r
=227×3.85+2×3.85
=22×0.55+7.70
=12.10+7.70=19.80 cm

(ii)Let r be the radius of the circle
 so 2πr2r=16.82r(π1)=16.82r(2271)=16.82r(157)=16.8=r=16.8×72×15=168×710×30=56×7100=392100=3.92
So radius of the circle = 3.92cm 

Question 8

Ans: Radius of the circler wire =42 cm
so circumference =2πr=2×227×42 cm=264 cm
on bending it into a square,
The perimeter of square =264 cm
so side of the square = perimeter 4
=2644=66 cm

Question 9

Ans : Radius of the 
circle =3.5 cm
(IMAGE TO BE ADDED)
So perimeter =2πr×14+2r
=12πr+2r=12×227×3.5+2×3.5=5.5+7.0=12.5 cm

Question 10

(i)  The inner circumference of the circular track =440 m
(IMAGE TO BE ADDED)
So (R)= circumference 2π
=440×72×22=70 m
width of track =14 m
So Radius of the Outer circle (R)
=70+14=84m
and diameter =2R=2×84=168 m

(ii)The inner edge of the circular track =440 m 
So inner radius (r)= circumference 2π
=440×722×2=70 m
with of track =10 m
So outer radius (R)=70+10=80 m
so length of outer edge
=2πR=2×227×80=35207 m=502.86 m

Question 11

Ans; Circumference of roller =3 m
Distance travelled =21 m
So Number of revolution will be
= Distance  circumference =213=7

Question 12

Ans: Diameter of the cycle wheel (d) = 70 cm
So circumference =πd=227×70=220 cm
Distance travelled in 25 revolutions 
=220×25=5500 cm=55 m
So distance of 55m travelled in 10 sec 
So The distance travelled in 1 hour
=5510×60×60 m=19800 m=19.8 km
so speed =19.8 km/h

Question 13

Sol: Distance of wheel (d)= 91cm
So circumference = πd=227×91=286 cm
Speed =10 km/hr.
Distance travelled in 1 hour =10 km So Distance travelled in 1 min=1060 km
=10×100060m=5003m
So Number of revolution in one min
=5003×100286=500×503×143=25000429=58118429

Question 14

Ans: Radius of circular field (γ)=35 m
so circumference =2πr=2×227×35
=220 m
Distance travelled in 4 round =220×4 m=880 m speed of walking =5 km/h
So Time taken to travelled 880 m=8805000hr
=880×605000=26425=10.76 min=10 min34sec (Approx) 

Question 15

Sol : (d) =84m
So circumference =π01=227×84=267 cm Distance covened in 1sec=4 revolutions =4×264=1056 cm
So Distance covered in 1 hour
=1056×60×60 cm=1056×60×60100×1000 km=380161000=38.016 km
So speed of the cart= 38.016 km/hr

Question 16

Diameter of semicircular part =70 m
So circumference of two semicircular part
=2×12πd=πd=227×70=220 m
So length of one complete round 
=ABC+DEF+AF+CD
=220+100+100m=420m

Question 17

Ans : Perimeter of the circular field = 660m
(IMAGE TO BE ADDED)
So (r)= circumfenence 2π=660×72×22=15×7=105 m

Join AC
So Length of diagonal of square ADCD
= diameter of the circle =2r
=2×105=210 m

So area of square plot = ( diagonal )22

=1210122=210×2102 m2=22,050 m2

































































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *