SChand CLASS 9 Chapter 16 Area of plane figures Exercise 16(C)

 Exercise 16 C

Question-1

Find the area of a parallelogram whose base and height are as given below:

$\begin{array}{|l|l|l|l|l|}\hline & \text { (i) } & \text { (ii) } & \text { (iii) } & \text { (iv) } \\\hline \text { Base } & 8 \mathrm{~cm} & 2.8 \mathrm{~cm} & 12 \mathrm{~mm} & 6.5\mathrm{~m} \\\hline \text { Height } & 3 \mathrm{~cm} & 5 \mathrm{~cm} & 8.7 \mathrm{~mm} & 4.8\mathrm{~m} \\\hline\end{array}$

Answer-1

Area of parallelogram $=$ Base $x$ height
(i) Area $=8 \times 3 \mathrm{~cm}^{2}$
$=24 \mathrm{~cm}^{2}$
(ii) Area $=(2.8 \times 5) \mathrm{cm}^{2}$
$=14 \mathrm{~cm}^{2}$
(iii) Area $=12 \times 8.7 \mathrm{~mm}^{2}$
$=104.4 \mathrm{~mm}^{2}$
(iv) Area $=(6.5 \times 4.8) \mathrm{m}^{2}$
$=31.20 \mathrm{~m}^{2}$

Question-2

The area of a parallelogram is $11 / 2$ ares. Its base is $20 \mathrm{~m}$. Find its height. $\left(1 \operatorname{arc}=100 \mathrm{~m}^{2}\right)$
Answer-2
Area $=(3 / 2 \times 100) \mathrm{m}$
$=(3 \times 50) \mathrm{m}^{2}$
$=150 \mathrm{~m}^{2}$
$\therefore 150=20 \times h$
$\mathrm{h}=7.5 \mathrm{~m}$

Question-3

In a parallelogram $A B C D, A B=8 \mathrm{~cm}, B C=5 \mathrm{~cm}$, perp. From $A$ to $D C=3 \mathrm{~cm} .$ Find the length of the perp. drawn from $B$ to $A D$.

Answer-3

Question-4

A parallelogram has side $34 \mathrm{~cm}$ and $20 \mathrm{~cm} .$ One of its diagonals is $42 \mathrm{~cm} .$ Calculate its area.

Answer-4
At first we have to calculate the area of the triangle having sides $34 \mathrm{~cm}, 20 \mathrm{~cm}$ and $42 \mathrm{~cm}$.
Now,
$\mathrm{s}=(34+20+42) / 2$
$=48 \mathrm{~cm}$
$\therefore$ Area of triangle
$=\sqrt{48(48-34)(48-20)(48-42)}$
$=\sqrt{48 \times 14 \times 28 \times 6}$
$=\sqrt{4 \times 12 \times 2 \times 7 \times 4 \times 7 \times 2 \times 3}$
$=\sqrt{4 \times 4 \times 2 \times 2 \times 7 \times 7 \times 36}$
$=4 \times 2 \times 7 \times 6$
$=336 \mathrm{~cm}^{2}$
$\therefore$ Area of parallelogram
$=2 \times$ Area of triangle if separating boundary of diagonal
$=2 \times 336$
$=672 \mathrm{~cm}^{2} .$

Question-5

$A B C D$ is a parallelogram with side $A B=12 \mathrm{~cm}$. Its diagonals $A C$ and $B D$ are the lengths 20 $\mathrm{cm}$ and $16 \mathrm{~cm}$ respectively. Find the area of $\| \mathrm{gm}$ ABCD

Answer-5

Let $O$ be the intersecting point of $A C$ and $B D$
We know,
diagonals of a parallelogram bisect each other
$\mathrm{OA}=\mathrm{OC}=(1 / 2) \times \mathrm{AC}=10 \mathrm{~cm}$
$O B=O D=(1 / 2) \times B D=8 \mathrm{~cm}$
in $\triangle \mathrm{AOB}$
$\mathrm{OA}=10 \mathrm{~cm}$
$\mathrm{OB}=8 \mathrm{~cm}$
$\mathrm{AB}=12 \mathrm{~cm}$
By using Heron's formula
$\operatorname{ar}(\Delta \mathrm{AOB})=\sqrt{s}(s-a)(s-b)(s-c)$
$s=(a+b+c) / 2$
$=(12+8+10) / 2=$
$30 / 2=15 \mathrm{~cm}$
$\begin{aligned}&\operatorname{ar}(\Delta A O B)=\sqrt{1} 5 \times 3 \times 7 \times 5 \\&=15 \sqrt{7} \mathrm{~cm}^{2}\end{aligned}$
we know that the diagonals of a parallelogram divides it into four equal triangles $=>\operatorname{ar}(\Delta A O B)=\operatorname{ar}(\Delta B O C)=\operatorname{ar}(\Delta C O D)=\operatorname{ar}(\Delta A O D)=15 \sqrt{7} \mathrm{~cm}^{2}$
$\operatorname{ar}(\mathrm{ABCD})=4^{\star} 15 \sqrt{7}=60 \sqrt{7} \mathrm{~cm}^{2}$ (Ans.)

Question-6

What is the area of a rhombus which has diagonals of $8 \mathrm{~cm}$ and $10 \mathrm{~cm}$.

Answer-6

Area of rhombus $=1 / 2 \times 8 \times 10 \mathrm{~cm}^{2}$
$=40 \mathrm{~cm}^{2}$

Question-7

The area of a rhombus is $98 \mathrm{~cm}^{2}$. If one of its diagonals is $14 \mathrm{~cm}$, what is the length of the other diagonal?

Answer-7

Let other diagonal be $=a$
Area of rhombus $=1 / 2 \times$ Product of diagonals
$98=1 / 2 \times 14 \times a$
Or, $a=14 \mathrm{~cm}$

Question-8

PQRS is a rhombus.
(i) If it is given that $\mathrm{PQ}=3 \mathrm{~cm}$, calculate the perimeter of $\mathrm{PQRS}$
(ii) If the height of the rhombus is $2.5 \mathrm{~cm}$, calculate its area,
(iii) The diagonals of a rhombus are $8 \mathrm{~cm}$ and $6 \mathrm{~cm}$ respectively. Find its perimeter.

Answer-8

(i)since all sides of rhombus are same in length
Therefore, perimeter of Rhombus $P Q R S$ is $=4 \times$ length of one side $=4 \times 3=12 \mathrm{c} \cdot \mathrm{m}$

(ii)Area of rhombus $=$ base $x$ height
$\begin{aligned}&=3 \times 2.5 \\&=7.5 \mathrm{~cm}^{2}\end{aligned}$

(iii) PQRS is a rhombus and we know that all four sides of a rhombus are of equal length.
And, In $\triangle$ POQ
$\mathrm{PQ}$ is hypotenuse, $\mathrm{OP}$ is base and $\mathrm{OQ}$ is perpendicular.
Using Pythagoras Theorem -
$\begin{aligned}&\Rightarrow(\mathrm{PQ})^{2}=(\mathrm{OP})^{2}+(\mathrm{OQ})^{2} \\&\Rightarrow(\mathrm{PQ})^{2}=(3)^{2}+(4)^{2} \\&\Rightarrow(\mathrm{PQ})^{2}=9+16 \\&\Rightarrow(\mathrm{PQ})^{2}=25 \\&\Rightarrow \mathrm{PQ}=\sqrt{2} 5 \\&\Rightarrow \mathrm{PQ}=5 \mathrm{~cm}\end{aligned}$
So, length of each side of the given rhombus is $5 \mathrm{~cm}$.
Perimeter of rhombus $=4 \times$ side
$\begin{aligned}&\Rightarrow 4 \times 5 \\&=20 \mathrm{~cm}\end{aligned}$
So, perimeter of the rhombus PQRS is $20 \mathrm{~cm}$.


Question 9
 
The sides of a rhombus are $5 \mathrm{~cm}$ each and one diagonal is $8 \mathrm{~cm}$, calculate,
(i) The length of the other diagonal and
(ii) The area of the rhombus.

Answer-9

(i)Let half the length of second diagonal be $x$
As two diagonals and a side form right angled triangle ;
$\Rightarrow x^{2}+4^{2}=5^{2}$
$\Rightarrow x=3$
$\Rightarrow$ length of other diagonal $=2 x=6 \mathrm{~cm}$

(ii)Area of rhombus $=(1 / 2)$ D1 $\times$ D2
Area of rhombus $=(1 / 2) 8 \times 6$
$=24 \mathrm{~cm}^{2}$

Question-10

In the given figure, $A B C X$ is a rhombus of side $5 \mathrm{~cm}$. angles $B A D$ and $A D C$ are right angles. If $\mathrm{DC}=8 \mathrm{~cm}$, calculate the area of $\mathrm{ABCX}$.

Answer-10
(IMAGE TO BE ADDED)
In fig.
Angle BAD = Angle ADC
But they're co interior angles. Thus, AB \| CD.
Also, AX $\|$ BC, this implies, ABCX is a parallelogram.
Therefore, AB = CX = $5 \mathrm{~cm}$ (opposite sides of parallelogram are equal)
Also, AX $=$ BC $=5 \mathrm{~cm}$
Now, DX $=$ DC-CX $=8-5=3 \mathrm{~cm}$
In $\triangle$ ADX, using Pythagorean theorem, we get,
AD $=4 \mathrm{~cm}$
Now, in parallelogram ABCX,
Base $=5 \mathrm{~cm}$
Height $=4 \mathrm{~cm} .$
Therefore, ar $(A B C X)=$ Base $\times$ Height
$=20 \mathrm{~cm}^{2}$






























































































































































































1 comment:

Contact Form

Name

Email *

Message *