Processing math: 100%

SChand CLASS 9 Chapter 13 Circles Exercise 13(B)

 Exercise 13 B


Question 1

Sol: (i) If Angle at a point=360
So 4x2+6x+6+7x18=36017x14=36017x=360+1417x=374x=37417=22

Now MQR = 7x18=7×2218
=15418=136

(ii) if AD is the diameter of the circle with center O
So mAOD=180
So 10y=180y=18010=18
NOW MBOC=6y=6×18=108

(iii) In the figure.
^AC=^BC
So AOC=BOC
So 8y8=6y
8y6y=82y=8
y=4
So MAOC=8y8=8×48=328=240
so MAOC=24

(iv). In the given figure,
OA=OB
circles with centre A and B are equal and ^CD=^EF
456x=9x45=9x+6x
15x=45x=4515=3
Now mEBF=9x=9×3=27
if mCAD=45+6x, then
45+6x=9x45=9x6x
3x=45x=453=15
m(EBF)=9x=9×15=135

(v)In the given figure, a circle with contre O and QT and PS are diameters
mPR=PQ+mQR
=MST+mQR
(POQ=SOT vertically opposite angles) =55+100=155
and MPRT=mPQ+MQRT
=55+180=235

(vi) In the figure chord AB= chord CD
 so 4y+y=y+685y=y+685yy=684y=68y=684=17mAB=4y+y=5y=5×17=85

Question 2

Sol: ABC is inscribeb in a circle and P=Q
 so AR=RR

(IMAGE TO BE ADDED)
if equal chords subtend equal angles at the center 
So MPR =MQR 

Question 3

Sol: In the given figure.
A B=C D
AC and BD are joined
To prove: AC=DB
if AB=DC
so m^AB=mˆC
Subtracting MAD from both side
So m^AB^AD=m¯DCm¯AD
mAC=mDDB
AC=DB Hence proved

Question 3

Sol: In the given figure,
AB=CD
AC and BD are Joinct
To prove: AC=DB
if AB=DC
so MAB=mˉD
Substracting MAD form both sides 
So MAB - AD= MDC- MAD
=MAC = MDB 
= AC =DB Hence proved 

Question 4

Sol: (image to be added)
In the figure A C=D B
To prove: AB=BC
 AC=DB So AC=DB

Adding MAD to both sides
^AC+^DB=^AD+^DB
^CD=^AB
CD=AB
Hence AB=CD

Question 5

Sol: In the circle
AB and AC are two arcs
X and y are the mid points of Are AB and are AC.
xy is Joined which meet
AB in P and AC in Q
To prove: AP=AQ
construction : Join AX,AY,BX and BY
(image to be added)
proof: if AB=AC
So Arc A X B=arc A Y C
But X and Y are the mid point of ^AB and ^AC
So AX=XB and AY=4C
So XAY=XBA and YAC=YCA
So XAB or XAP=YAQ
Now in XAP and YAQ
AY=AY
XAP=YAQ
AXP=AYQ
So XAPYAQ
So AP=AQ Hence proved 

Question 6

Sol: In a circle with center O, chord AB=BC=CD=DE AD and DE are joined
To prove: AD=DE
construction: Join AO,BO, CO, DO and EO

(image to be added)
Proof: if AB=BC=CD=DE
So ^AB+^BC+^CD=^AD
similanly BC+CD+DE=BE
AB+BC+CD=BC+CD+DEAD=BE

So Center AOD= central BOE
Now in AOD and BOE,
OA=OBOD=OEAOD=BOE sO AODBOE SO AD=BE

Question 7

Sol: In a circle, arc APB = arc CQD AC and BD are joined 
To prove: AC = BD 
Construction : Join AD 
Proof: If Arc APB = Arc CQD 
So ADB=CAD
(Equal arcs subtends equal angles at the circumference )
But these are alternate angles
So AC||BD Hence proved  

Question 8

Sol: In the figure equilateral ABC is inscribed in acircle P and s are midpoint ag ares AB and AC respectively
To prove: PQ=QR=KS
constructions: Join AP, BP, AS and CS

Proof : If p is the mid point of Arc and S is the mid point of Arc AC 
 (IMAGE TO BE ADDED)
So AP=PB and AS=SC
So PAB=PBA and CAS=SAC
But AB=AC
So PAB=PBA=CAS=SAC
Now in APQ and ASR
AP=ASPAQ=SAR and CAPQ=ASR SO PAQASR so PQ=RS NOW PAQ=SAR
Adding QAR to both sides
 So MA+QAR=QAR+SAR
Now in PAR and SAQ
AP=ASPAR=SAQ So APQ=ASPAR=SAQ SO PR=QS
subtracting is and from (ii)
PRPQ=QSRSQR=QR SO PQ=QR=RS

Question 9

Sol: A regular hexagon ABCDEF Inscribe in a circle with center O join AO, BO , CO , DO ,EO and FO 
(IMAGE TO BE ADDED)

To prove: Each angle of hexagon = 60
Proof : If AB = BC = CD =DE= EF= FA 
So ^AB=^BC=^CD=^DE=EF=FF
So each are will subtends angle at the center 
=3606=60
Hence proved






















































































No comments:

Post a Comment

Contact Form

Name

Email *

Message *