Loading [MathJax]/jax/output/HTML-CSS/jax.js

SChand CLASS 9 Chapter 10 Rectilinear Figures Exercise 10(A)

 Exercise 10 A

(1) In a right angled triangle ABC,c is the length of the hypotenuse, and a and b are other two sides.
(i) If a=6 and b=8, then find c.
(ii) If c=25 and a=24, then find b.
(iii) If c=13 and b=5, them find a.
(iv) If a=10 and c=21, then find b.
(v) if a=9 and b=9, then find c.

(2) A rectangular field is 30 m by 40 m. What distance is saved by walking diagonally across the field?

(3) A man travels 7 km due north, then goes 3 km due east and then 3 km due south. how far is he form his starting point?

(4) The diagonals of a rhombus are 12 cm and 9 cm long. Calculate the length of one side of the rhombus.
(5) (i) In a right-angled triangle ABC it is given that the hypotenuse, AC=2.5 cm, and the side AB =1.5 cm. Calculate the side BC.

(ii) AD is drawn perpendicular to BC, base of an equilateral triangle ABC. Given BC=10 cm, find the length of AD, correct to one decimal place of decimal.

(6) ABC is right angled triangle. Angle ABC=90 degree, AC=25 cm and AB=24 cm. Calculate the area of ABC.

(7) A ladder 13 m long tests against a vertical wall, If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from ground.

(8) Use the given information to make a neat diagram of the figure having given properties and write down the name of the figures.
In triangle ABC,AB2=BC2+AC2 and AC=2BC.

(9) In fig 10.10,ABCD represents a quadrilateral in which AD=13 cm,DC=12 cm,BC=3 cm, and ABD=BCD=90. Calculate the length of AB.

(10) Which of the triangles whose sides are given are given below are right angled?
(i) 4 cm,5 cm,6 cm
(ii) 1.2 cm,3.7 cm,3.5 cm.
(iii) 4 cm,9.6 cm,10.4 cm
(iv) 2.2 cm,3.3 cm,4.4 cm.

(11) In Fig. 10.11, find the distance of D from A, unit of length is cm,(AB=2,BC=4,CD=2)

(12) The sides of a right angled triangle containing the right angle are 5x and (3x1)cm. If the area of the triangle be 60 cm square, calculate the lengths of the sides of the triangle.

(13) In Fig. 10.12 its is given that AB=BC=25 cm,AE=7 m, and CD=24 m, find the length of DE and also show that triangle ABE and triangle BDC are congruent.

(14) A ladder rests against a vertical wall at a height of 12 m from the ground with its foot at a distance of 9 m from the wall on the ground. If the foot of the ladder is shifted 3 m away from the wall, how much lower will the ladder slide down?

(15) AD is an altitude of a ABC and AD is 12 cmBD=9 cm and DC=16 cm long respectively. Prove that the angle BAC is a right angle.

(16) The shortest distance AP from a point A to a straight line QR is 12 cm, and Q, R are 15 cm and 20 cm distance from A on opposite sides of AP, prove that QAR is a right angle.

(17) In Fig. 10.13, PT is an altitude of the triangle PQR, In which PQ 25 cm,PR=17 cm,PT=15 cm and QR=xcm. Calculate x.

(18) In Fig. 10.14, AB=8 cm,BC=6 cm,AC=3 cm and the angle ADC=90 degree, calculate CD.

(19) In Fig. 10.15, the angle BAC is a right angle and AD is perpendicular to BC;AB=4 cm and AC =3 cm and BD=x, Calculate x

(20) In fig. 10.16, the angle BAD and ADC are right angles and AX is parallel to BC. If AB =BC=5 cm, and DC=8 cm, Calculate the area of ABCX.

SOLUTIONS 1
(i)
c=a2+b2=62+82=36+64=100=10

(ii)
b=(25)2(24)2=625576=49=7

(iii)
a=(13)252=16925=144=12

(iv)b=(29)2(16)2
=441100
=341

(v)
C=92(9)2=182=92m

 Solution 2:
 Distance Saved = (30)2+(40)2 m
=900+1600=2500 m=50 m

Solution 3:  (IMAGE TO BE ADDED)

Distance from starting point= 42+32
=49+9 
=16+9
=5m

 Solution 4
(IMAGE TO BE ADDED)
AB=(9/2)2+62 cm2
=814+36cm2
=1444+81
2254
=152=7.5 

Solution 5
 (i) (IMAGE TO BE ADDED)
BC = (25)2(15)2 cm
6.252.25
=4 cm
=2 cm

(ii)(IMAGE TO BE ADDED)
AD=(10)252 cm
=10025 cm
=75 cm
=8.7 cm

Solution 6
(IMAGE TO BE ADDED)
BC=(25)2(29)2
=625576 cm
=49 cm
=7cm

Arua =12×7×24 cm2

=84 cm2

Solution 7
(IMAGE TO BE ADDED)
AB=(13)252m
=16925 m
=144
=12 m

Solution 8
(IMAGE TO BE ADDED)
AB2=AC2+BC2
AC=2BC

Name of the figure in right angle triangle with right angle at C

Solution 9
(IMAGE TO BE ADDED)
DB2=(12)2+(3)2=144+2DB=153 cm
AB=169153=4 cm

Solution 10

(i) 62=52+42
36=25+16 Not right angle triangle 

(ii)(37)2=(35)2+(2)2 

So, it is a right angle triangle ,

(iii)(104)2=(96)2+42
right angle triangle 

(iv)(4.4)2(3.3)2+(2.2)2
Not a right angle triangle 

Solution 11
(IMAGE TO BE ADDED)

Solution 12

12×5x×(3x1)=60
=x(3x1)=24
=3x2x24=0
=3x29x+8x24=0
=3x(x3)+8(x3)=0
(x3)(2x+8)=0 

Length of the side is positive so sides are 
5×3=15 cm =(3×31)=8 cm
=(15)2+64 
=225+64
289= 17cm

Solution 13

(IMAGE TO BE ADDED)

DB=(25)2(24)2 m=625576 m=49 m=7 m

BC=(25)272=62549=576 m=24 m

So, ADBC & ABCD 
Length of DE= (24+7)= 31m

Solution 14

(IMAGE TO BE ADDED)

AC2=(12)2+92=144+81 = 225 

AC=15 m

BE=(15)2122 =225144
=81 m
=9m

Ladder side down = (12-9)=3m

Solution 15

(IMAGE TO BE ADDED)

ABD is right ang le triangle, 
AB=122+92 cm=144+81 cm=225 cm=15 cm

AC=144+256=400 cm=20 cm

BC=(3+16)=25 cm
(25)2=(20)2+(15)2
BAC is right angle triangle 

Solution 16

(IMAGE TO BE ADDED)

(not given)

Solution 17

(IMAGE TO BE ADDED)

QT=(25)2(15)2 cm=(32522πcm=400 cm=20 cm

RT=(17)2(15)2 cm=289225 cm=64 cm=8 cm

x=QR=(20+8)=28 cm

Solution 18

(IMAGE TO BE ADDED)

CD=x cm

ABD We get, 
AB2=BD2+AD2
S2=(6+n)2+AD2

From triangle ,  ABD ................(i)
32=AD2+x2...........................(ii)

From (i) & (ii) We get 
82(6+x)2=32x2
64=(36+12x+x2)=32x2
2812xx2=9x2
12x=19
x=17/12 cm

Solution 19

(IMAGE TO BE ADDED)
$B C=\sqrt{4^{2}+3^{3}
=16+2=5 cm
BC=42+32=25=5 cm
DC = 5-x

AD=16x2(From\triangle AB D)
AD=9(5x)2 (From  ADC )
(6x2=9(5x)2
7=x2 (25-2 x 5.X + x2)
7=x225+10x-x2
x=32

Solution 20

(IMAGE TO BE ADDED)

From ADX We get , 
52=32+AD2AD2=259=16
AD = 4cm
Area of BCE12×3×4
6 cm2

Area of ABCX = Area of ABED+ Area of BCE - Area of ADX
5×4+ 6 -6
=20 cm2








1 comment:

Contact Form

Name

Email *

Message *