Exercise 5.6
Question 1
(i) $f(x)=\sqrt{4-x^{2}} ;$, x∈(-2,2), find f 'x
Sol :
$f(x)=\sqrt{4-x^{2}}=(4-x^2)^{\frac{1}{2}}$
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
$f^{\prime}(x)=\frac{1}{2}\left(4-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x} ( 4 - x ^ { 2 } )$
$=\frac{1}{2}\left(4-x^{2}\right)^{-\frac{1}{2}}\times (-2 x)$
$=\frac{-x}{\sqrt{4-x^{2}}}$
(ii) $f(x)=\sqrt{1-x^{2}}$ x∈(0,1) ; find f '(x)
Sol :
$f(x)=\sqrt{1-x^{2}}=(1-x^2)^{\frac{1}{2}}$
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
$f^{\prime}(x)=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(1-x^{2}\right)$
$=\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x)$
$=\frac{-x}{\sqrt{1-x^{2}}}$
Question 2
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
(ii) $\left(3 x^{2}-9 x+5\right)^{9}$
Sol :
$f(x)=\left(3 x^{2}-9 x+5\right)^{9}$
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
$f'(x)=9\left(3 x^{2}-9 x+5\right)^{8}\cdot (6x-9)$
Question 3
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
$=\frac{1}{2}(3 x+2)^{-\frac{1}{2}} \cdot 3+ \frac{-1}{2}\left(2 x^{2}+4\right)^{-\frac{3}{2}} (4 x)$
$=\frac{3}{2\sqrt{3 x+2}}-\frac{2x}{(2x^{2}+4)^{\frac{3}{2}}}$
(ii) $\sin ^{3} x+\cos ^{6} x$
Sol :
[Using $\frac{d}{d x} x^{n}=n x^{n-1}$]
Question 4
Sol :
Sol :
$f'(x)=-\sin \sqrt{x}\cdot \frac{d}{d x} \sqrt{x}$
$=-\sin \sqrt{x} \cdot\left(\frac{1}{2} x^{-\frac{1}{2}}\right)$
Question 5
Question 6
Question 7
[Using $\frac{d}{d x} \sqrt{x}=\frac{1}{2\sqrt{x}}$]
Question 8
$f(x)=1+ \frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{99}}{99}+\frac{x^{100}}{100}$
$f(x)=1+\sum^{100}_{n=1} \frac{x^{n}}{n}$
$f'(x)=\sum_{n=1}^{100} \frac{nx^{n-1}}{n}$
$f'(x)=\sum_{n=1}^{100} x^{n-1}$
$f^{\prime}(x)=1+x+x^{2}+\cdots+x^{99}$
f '(0)=1+(0+0+....upto 99 terms)
f '(0)=1
f '(1)=1+(1+1+....upto 99 terms)
Question 9
$\left|2 x^{2}-3\right|$
Sol :
$f(x)=\left|2 x^{2}-3\right|$
[Using $\frac{d}{d x}|x|=\frac{x}{|x|}$]
$f'(x)=\frac{2x^2-3}{\left|2 x^{2}-3\right|}.\frac{d}{dx}(2x^2-3)$
$=\frac{\left(2x^{2}-3\right)(4 x)}{\left|2 x^{2}-3\right|}$
Question 10
f(x)=|cos x|. Find $f^{\prime}\left(\frac{3 \pi}{4}\right)$
Sol :
$f^{\prime}(x)=\frac{\cos x}{|\cos x|} \frac{d}{d x}(\cos x)$
$=-\frac{\cos x}{\mid \cos x|} \cdot \sin x$
$f^{\prime}\left(\frac{3 \pi}{4}\right)=\frac{-\cos \frac{3 \pi}{4} \sin \frac{3 \pi}{4}}{\mid \cos \left(\frac{3 \pi}{4}\right) \mid}$
$=\frac{-\cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right) \sin \left(\frac{\pi}{2}+\frac{\pi}{4}\right)}{| \cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right) \mid}$
$=\frac{-\left(-\frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{2}}}{\left|-\frac{1}{\sqrt{2}}\right|}$
$=\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}= \frac{1}{2} \cdot \sqrt{2}=\frac{1}{\sqrt{2}}$
Question 11
(i) $\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}=f(x)$
Sol :
Using $\left[\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{dx}-u \frac{dv}{dx}}{v^{2}}\right]$
$f^{\prime}(x)=\frac{\sqrt{a^{2}+x^{2}} \frac{d}{d x} \sqrt{a^{2}-x^{2}}-\sqrt{a^{2}-x^{2}} \frac{d}{d x} \sqrt{a^{2}+x}}{\left(a^{2}+x^{2}\right)}$
$=\frac{\left[\sqrt{a^{2}+x^{2}}\left[\frac{1}{2}\left(a^{2}-x^{2}\right)^{-1 / 2} \frac{d}{d x}\left(a^{2}-x^{2}\right)\right]\right.{\left.-\sqrt{a^{2}-x^{2}}\left[\frac{1}{2}\left(a^{2}+x^{2}\right)^{\frac{-1}{2}} \frac{d}{d x}\left(a^{2}+x^{2}\right)\right]\right)}}{\left(a^{2}+x^{2}\right)}$
$=\frac{\sqrt{a^{2}+x^{2}} \frac{1}{2 \sqrt{a^{2}-x^{2}}}(-2 x)-\sqrt{a^{2}-x^{2}}\frac{1}{2 \sqrt{a^{2}+x^{2}}}2 x}{(a^2+x^2)}$
$=\frac{ \frac{-x\sqrt{a^{2}+x^{2}}}{\sqrt{a^{2}-x^{2}}}-\frac{x\sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}+x^{2}}}}{(a^2+x^2)}$
$=\frac{-x\left[a^{2}+x^{2}+a^{2}-x^{2}\right]}{\sqrt{a^{2}-x^{2}} \sqrt{a^{2}+x^{2}}\left(a^{2}+x^{2}\right)}$
$=\frac{-2 a^{2} x}{\sqrt{a^{2}-x^{2}}\left(a^{2}+x^{2}\right)^{3 / 2}}$
(ii) $\sin \sqrt{x}+\cos ^{2} \sqrt{x}$
Sol :
$f(x)=\sin \sqrt{x}+\cos ^{2} \sqrt{x}$
$=\cos \sqrt{x} \times \frac{1}{2\sqrt{x}}+2 \cos \sqrt{x}(-\sin \sqrt{x}) .\frac{d}{d x} \sqrt{x}$
$=\cos \sqrt{x} \frac{1}{2 \sqrt{x}}+(-2 \sin \sqrt{x} \cos \sqrt{x}) \frac{1}{2 \sqrt{x}}$
$=\frac{1}{2 \sqrt{x}}(\cos \sqrt{x}-\sin 2 \sqrt{x})$
Question 12
(i) $\frac{\sin (a x+b)}{\cos (c x+d)}$
Sol :
$f(x)=\frac{\sin (a x+b)}{\cos (c x+d)}$
$f^{\prime}(x)=\sin (ax+b) .\frac{d}{d x}(\cos (cx+d))^{-1}+(\cos (cx+d))^{-1}.\frac{d}{dx}(\sin x (ax+b))$
$=\sin (a x+b)(-1 \cos (x+a))^{-2}. \frac{d}{d x} \cos (cx+d)+(\cos (c x+d))^{-1} \cdot \cos (a x+b) \cdot \frac{d}{d x}(a x+b)$
$=-\frac{\sin (a x+b)}{\cos ^{2}(c x+d)}\left.(-\sin (cx+d)) .\frac{d}{d x}(cx+d)+\frac{\cos(ax+b)}{\cos(cx+d)}.a\right.$
$=\frac{c \sin (a x+b) \sin (c x+d)+a \cos (a x+6) \cos (cx+d)}{\cos ^{2}(c x+d)}$
(ii) $f(x)=\frac{\sin x+x^{2}}{\cot 2 x}$
Sol :
$f(x)=\left(\sin x+x^{2}\right) \tan 2 x$
$\left[\frac{d}{d x} u v=u \frac{dv}{d x}+v \frac{d u}{d x}\right)$
$f'(x)=(\sin x+x) \frac{d}{d x}(\tan 2 x)+\tan 2 x .\frac{d}{dx}(\sin x+x^2)$
$=\left(\sin x+x^{2}\right)\left(\sec ^{2} 2 x\right) \frac{d}{d x}(2 x)+\tan 2 x(\cos x+2 x$
$=2 x \sec^{2} x\left(\sin x+x^{2}\right)+\tan 2 x(\cos x+2 x)$
Question 13
(i) $\sin ^{m} x \cos ^{x} x$
Sol :
$f(x)=\sin ^{m} x \cos ^{x} x$
Using $\left[\frac{d}{d x} u v=u \frac{d v}{d x}+v \frac{d u}{d x}\right]$
$f^{\prime}(x)=\operatorname{sin}^{m} x .\frac{d}{d x} \cos ^{n} x+\cos ^{n} x. \frac{d}{d x} \sin^m x$
$=\sin ^{m} x\left(n \cos ^{n-1} x. \frac{d}{d x} \cos x\right)+\cos ^{n} x\left(m \sin ^{m-1} x. \frac{d}{d x} \sin x\right)$
$=\left(\sin ^{m} x\right)\left(x \cos ^{n-1} x\right)(-\sin x)+\left(\cos ^{n} x\right)\left(m \sin ^{m-1} x\right)(\cos x)$
$=\left(\cos ^{n-1} x\right)\left(\sin ^{m-1} x\right)\left[-n \sin ^{2} x+m \operatorname{cos}^{2} x\right]$
(ii) $\sin ^{n}\left(a x^{2}+b x+c\right)$
Sol :
$f(x)=\sin ^{n}\left(a x^{2}+b x+c\right)$
$=x \sin ^{n-1}\left(a x^{2}+b x+c\right) \cos \left(a x^{2}+b x+c\right).\frac{d}{dx}(ax^2+bx+c)$
$=n \sin ^{n-1}\left(a x^{2}+bx+c\right) \cos \left(ax^{2}+b x+c\right)(2ax+b)$
Question 14
(i) $\frac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}}$
Question 15
$f(x)=\sqrt{\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1}}$
Question 16
$=\frac{(1-\sin x)}{(1+\cos x)^{2}}(\sin x)-\frac{\cos x}{(1+\cos x)}$
$=\frac{(1-\sin x) \sin x-\cos x(1+\operatorname{cos} x)}{(1+\cos x)^{2}}$
$=\frac{\sin x-\operatorname{sin}^{2} x-\operatorname{cos} x-\cos ^{2} x}{(1+\cos x)^{2}}$
$=\frac{\sin x-\cos x-1}{\left(1+\cos x\right)^{2}}$
$f^{\prime}\left(\frac{\pi}{2}\right)=\frac{\sin \frac{\pi}{2}-\cos \frac{\pi}{2}-1}{\left(1+\operatorname{cos} \frac{\pi}{2}\right)^{2}}$
$=\frac{1-0-1}{(1+0)^{2}}=\frac{0}{1^{2}}$
=0
Question 17
$y=\sqrt{x}+\frac{1}{\sqrt{x}}$ ; Prove $2 x \frac{d y}{d x}+y=2 \sqrt{x}$
Sol :
$y=\frac{x+1}{\sqrt{x}}$
$\frac{d y}{d x}=\frac{\sqrt{x} \frac{d}{d x}(x+1)-(x+1) \frac{d}{d x} \sqrt{x}}{x}$
Using $\left[\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d u}{d x}-u \frac{d v}{dx}}{v^{2}}\right]$
$x \frac{d y}{d x}=\sqrt{x}-(x+1) \frac{1}{2} x^{-1 / 2}$
$x \frac{d y}{d x}=\sqrt{x}-\frac{(x+1)}{2 \sqrt{x}}=\frac{2 x-(x+1)}{2 \sqrt{x}}$
$2 x \frac{d y}{d \pi}=\frac{x-1}{\sqrt{x}}$
$2 x \frac{d y}{d x}=\sqrt{x}-\frac{1}{\sqrt{x}}$
$2 x \frac{d y}{d x}+\sqrt{x}=2 \sqrt{x}-\frac{1}{\sqrt{x}}$
$2 x \frac{d y}{d x}+\sqrt{x}+\frac{1}{\sqrt{x}}=2 \sqrt{x}$
$2 x \frac{d y}{d x}+y=2 \sqrt{x}$
Question 18
$y=\sqrt{\frac{1-\sin 2 x}{1+\sin 2 x}}$ ; Prove $\frac{d y}{d x}+\sec ^{2}\left(\frac{\pi}{4}-x\right)=0$
Sol :
$y=\sqrt{\frac{1-\cos \left(\frac{\pi}{2}-2 x\right)}{1+\operatorname{sin}\left(\frac{\pi}{2}-2 x\right)}}$
$=\sqrt{\frac{2 \sin ^{2}\left(\frac{\pi}{4}-x\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-x\right)}}$
$y=\sqrt{\tan ^{2}\left(\frac{\pi}{4}-x\right)}=\tan \left(\frac{\pi}{4}-x\right)$
$\frac{d y}{d x}=\sec ^{2}\left(\frac{\pi}{4}-x\right) \frac{d}{d x}\left(\frac{\pi}{4}-x\right)$
$=-\sec ^{2}\left(\frac{\pi}{4}-x\right)$
$\frac{d y}{d x}+\sec ^{2}\left(\frac{\pi}{4}-x\right)=0$
Question 19
|cos x| ; Is this function is differentiable . What about cos |x|
Sol
f(x)=|cos x|
Using $\left[\frac{d}{d x}|x|=\frac{x}{|x|}\right]$
$f^{\prime}(x)=\frac{\cos x}{|\cos x|} .\frac{d}{d x}(\cos x)$
$=\frac{\cos x(-\sin x)}{|\cos x \mid}=-\frac{\sin x \cos x}{|\cos x|}$
$f^{\prime}(x)=-\frac{\sin x \cos x}{|\cos x|}$
above function is not differentiable ∀ $x=(2 n+1) \frac{\pi}{2}$ as it forms 0/0 form.
where as cos |x|=cos x which is differentiable for all real values.
No comments:
Post a Comment