Exercise 1.1
Question 1
(i) A={12,3,4,...10}
R={(x,y) : 2x-y=0}
Sol :
2x-y=0
2x=y
So, when x=1 , y=2 and so on (given in table below)
x | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
y | 2 | 4 | 6 | 8 | 10 |
R={(1,2),(2,4),(3,6),(4,8),(5,10)}
Reflexivity
Here,
(1,1),(2,2),(3,3)....(10,10)∉R
So, R is not reflexive
Symmetry
Here,
(1,2)∈R but (2,1)∉R
So, R is not symmetric
Transitivity
Here,
(1,2)∈R and (2,4)∈R but (1,4)∉R
So, R is not transitive
(ii) A=Z
R={(x,y) : x-y is an integer}
Sol :
Reflexivity :
∀ x∈Z
∵x-x=0 ∈Z
⇒(x,x)∈R
∴R is reflexive
Symmetric :
∀ x,y∈Z , (x,y)∈R
⇒x-y∈Z
⇒-(y-x)∈Z
⇒y-x ∈Z
⇒yRx
∵xRy⇒yRx
∴R is symmetric
Transitivity :
∀ x,y,t ∈Z , (x,y)∈R and (y,t)∈R
⇒x-y∈Z , y-z∈Z
⇒x-y=k ,k∈Z ...(i)
⇒y-z=k' k'∈Z...(ii)
Adding (i) and (ii)
⇒x-y+y-z=k+k'
⇒x-y=k+k'
⇒x-y=k'' , k''∈Z
⇒xRt
∵xRy , yRt ⇒ xRt
∴R is transitive
Question 2
If the relation R in the set A , where A={1,2,3,4,5,6} is defined by R={(x,y):y is divisible by x}, then express R in the roaster form. Also, determine whether the relation R is (i) Reflexive (ii) Symmetric (iii) Transitive
Sol :
A={1,2,3,4,5,6}
R={(x,y) : y is divisible by x}
R={(1,1),(1,2),(2,2),(1,3),(3,3),(1,4),(2,4),(4,4),(1,5),(5,5),(1,6),(2,6),(3,6),(6,6)}
Reflexivity :
∵xRx ∀ x∈A
∴R is reflexive
Symmetric :
∵(1,2)∈R but (2,1)∉R
∴R is not symmetric
Transitivity :
∵xRy and yRz
⇒xRz
∴R is transitive
Question 3
If R is the relation defined on the set of natural numbers N as follows:
R={(x,y) : x,∈y N , 2x+y=41}
Find the domain and the range of the relation R
Determine whether the relation is reflexive , symmetric and transitive
Sol :
2x+y=41
y=41-2x
R={(1,39),(2,37),(3,35),(4,33),(5,31),(6,24),(7,27),(8,25),(9,23),(10,21),(11,19),(12,17),(13,15),(14,13),(15,11),(16,9),(17,7),(18,5),(19,3),(20,1)}
Domain of R={1,2,3,4,5......}
Range of R={39,38,37...1}
Reflexivity :
∵(1,1)∉R
∴R is not reflexive
Symmetric :
∵(1,39)∈R but (39,1)∉R
∴R is not symmetric
Transitivity :
∵(11,19)∈R and (19,3)∈R but (11,3)∉R
∴R is not transitive
Question 4
Determine whether each of the following relations in the set A of human beings in a city at a particular time are reflexive , symmetric and transitive
(i) R={(x,y) : x and y work at the same place} [NCERT]
(ii) R={(x,y) : x and y live in the same locality} [NCERT]
(iii) R={(x,y) : x is exactly 7 cm taller than y} [NCERT]
(iv) R={(x,y) : x and y live within 2 kilometres} [NCERT]
Sol :
working..
No comments:
Post a Comment