Exercise 8.3
Question 1
i. $3 m-5$
Given $m=2$
$\quad 3(2)-5=6-5=1$
ii) $9-5 m$
$m=2$
$9-5(2)=9-10$
$=-1$
iii, $3 m^{2}-2 m-7$
$m =2$
$3(2)^{2}-2(2)-7$
$3 \times 4-2 \times 2-7$
$12-4-7$
= 1 Ans
iv) $\frac{5}{2} m-4$
$m=2$
=$\frac{5}{2} \times 2-4$
$5-4$ = 1
Question 2
i)
$\begin{aligned} 4 p+7 & \\ p &=-2 \\ & 4(-2)+7=-8+7=-1 \end{aligned}$
ii) $-38^{2}+4 p+7$
$-3(-2)^{2}+4(-2)+7$
$-3 \times 4-8+7$
$-12-8+7$
$-13$
iii) $-2 p^{3}-3 p^{2}+4 p+7$
=$-2 x(-2)^{3}-3(-9)^{2}+4(-2)+7$
=$-2 x-8-3 \times 4+4 x-2+7$
=$16-12-8+7$
=3
Question 3
(i) $a^{2}+b^{2}$
$a=2, b=2$
$(2)^{2}+(2)^{2}$
$4+4=8$
ii) $a^{2}+a b+b^{2}$
$a=2 \quad b=2$
$(2)^{2}+2 x a+(2)^{2}$
=$4+4+4$
$=12$
iii) $a^{2}-b^{2}$
=$(2)^{2}-(2)^{2}$
=$4-4$
=0
Question 4
i) $2 a^{2}+b^{2}+1$
$a=0 \quad b=-1$
=$2 \times(0)^{2}+(-1)^{2}+1$
=$0+1+1$
=2
ii) $a^{2}+a b+2$
=$(0)^{2}+0 \times -1+2$
=0
iii) $2 a^{2} b+2 a b^{2}+a b$
=$2(0)^{2}(-1)+2(0)(-1)^{2}+0(-1)$
= 0
Question 5
Given $p=-10$
The value of $p^{2}-2 p-100$
=$(-10)^{2}-2(-10)-100$
=$100+20-100$
=20
Question 6
Given = 10
The value of $z^{3}-3 z+30$
=$(10)^{3}-3(10)+30$
=$1000-30+30$
=1000
Question 7
Given x = 2
The value of $x+7+4(x-5)$ is
$x+7+4 x-20$
$5 x-13$
$5 \times 2-13$
$10-13=-3$
ii) Given $x=2$
The value of $3(x+2)+5 x-7$
=$3 x+6+5 x-7$
=$8 x-1$
=$8(+2)-1$
=$16-1$
=15
iii) Given x = 2
The value of $6 x+5(x-2)$
=$6 x+5 x-10$
=$11 x-10$
=$11 \times 2-10$
=$22-10$
=12
iv) Given x = 2
The value of $4(2 x-1)+3 x+11$
=$8 x-4+3 x+11$
=$11 x+7$
=$11 \times 2+7$
=$22+7$
= 29
Question 8
(i) Given a=-1, b=-2
=$2 a-2 b-4-5+a$
=$2(-1)-2(-2)-4-5+(-1)$
=$-2+4-4-5-1$
=$-8$
ii) Given $a=-1, \quad b=-2$
The value of $2\left(a^{2}+a b\right)+3-a b$
=$2 a^{2}+2 a b+3-a b$
=$2 a^{2}+a b+3$
=$2(-1)^{2}+(-1)(-2)+3$
=$2+2+3$
=7
No comments:
Post a Comment