ML AGGARWAL CLASS 7 Chapter 6 Ratio and Proportion EXERCISE 6.1

 EXERCISE 6.1

Question 1

i) Given ratio

$\begin{aligned}=\frac{1}{6}: \frac{1}{9}=\frac{1 / 6}{1 / 9} &=\frac{1}{6} \times 9 \\ &=\frac{3}{2} \\ &=2.2 \end{aligned}$ 

ii) Given ratio $=4 \frac{1}{2}: 1 \frac{1}{8}$

$\begin{aligned}=\frac{9}{2}: \frac{9}{8} &=\frac{9 / 2}{9 / 8} \\ &=\frac{9}{2} \times \frac{8}{9} \\ &=4: 1 \end{aligned}$

iii) $\frac{1}{5}: \frac{1}{10}: \frac{1}{15}$

Lcm of $5,10,15$ is 30

$=\frac{1}{5} \times 30: \frac{1}{10} \times 30: \frac{1}{15} \times 30$

$=6: 3: 2$


Question 2

i) Rs 5 to 50 paise 

$=\frac{5 \times 100 \text { paise }}{50 \text { paise}}$

$=\frac{50}{5}=10: 1$


ii)$3 \mathrm{~km}$ to $300 \mathrm{~m}$

$=\frac{3 \times 1000 \mathrm{~m}}{300}$

$=\frac{3000}{300}$

$=10: 1$

iii)
 $\begin{aligned} 9 m & \text { to } 27 \mathrm{~cm} \\ &=\frac{9 \times 100 \mathrm{~cm}}{27} \\ &=\frac{900}{27} \\ &=100: 3 \end{aligned}$

iv) 
$\begin{array}{rl}15 & \mathrm{~kg} \text { to } 210 \mathrm{~g} \\ = & \frac{15 \times 1000 \mathrm{~g}}{210} \\ = & \frac{15000}{210} \\ & =500: 7\end{array}$

V) 25 minutes to $1.5$ hour

$=\frac{25 \text { minutes }}{1.5 \times 60 \text { minutes }}$

$25 / 90$ = $5: 18 .$

vi) 30 days to 36 hours 

$=\frac{30\times 24}{36 \mathrm{~hours}}$

=20: 1

Question 3

$A: B=3: 4 \quad ; B: C=8: 9$

$\frac{A}{B}=\frac{3}{4} ; \frac{B}{c}=\frac{8}{9}$

Now $\frac{A}{C}=\frac{A}{B} \times \frac{B}{C}=\frac{3}{4} \times \frac{8}{9}$◘

A: C=2: 3

Question 4

$A: B=5: 8$, Value of $B=8$

$B: C=18: 25$, value of $B=18$

LCM of these two value of B i.e 8 and 18 is 72

Thus , 

$A: B=5: 8=\frac{5}{8}=\frac{5 \times 9}{8 \times 9}=\frac{45}{72}=45: 72$ and

$B: C=18: 25=\frac{18}{25}=\frac{18 \times 4}{25 \times 4}=\frac{72}{100}=72: 100$

$A: B: C=45: 72: 100$


Question 5

Let 

$3 A=2 B=5 c=k$ (Say), then

$A=\frac{k}{3}, B=\frac{k}{2}, c=\frac{k}{5} .$

$\begin{aligned} \therefore A: B: C=& \frac{K}{3}: \frac{K}{2}: \frac{k}{5} \\ &=\frac{1}{3}: \frac{1}{2}: \frac{1}{5} \end{aligned}$

Lcm of $3,2,5$ is 30

$=\frac{1}{3} \times 30: \frac{1}{2} \times 30: \frac{1}{5} \times 30$

Hence , A:B:C= 10:15:6

Question 6

Given Income =Rs 120

Spendings = Rs 90

Savings = Income -spendings

=120-90

= 30 

i) $\frac{\text { Spending }}{\text { Income }}$ = $\frac{90}{120}=\frac{9}{12}=3: 4$

ii) $\frac{\text { Savings }}{\text { Income }}$ = $\frac{30}{120}=\frac{1}{4}=1: 4$

iii) $\frac{\text { Savings }}{\text { Spendings }}=\frac{30}{90}=\frac{1}{3}=1: 3$.

Question 7

An alloy contains = 5 grams 

and of which copper was = $3 \frac{3}{4} \mathrm{grams}$

=$\frac{15}{4}$ grams

Now nickel contains = $5-\frac{15}{4}$

=$\frac{20-15}{4}$

=$\frac{5}{4}$

Question 8

Let the two pieces will be $x, \frac{x}{2}$

Total height of pole. $=3$ metres

i.e $x+\frac{x}{2}=3$

$\frac{2 x+1}{2}=3$

$\frac{3 x}{2}=3$

$x=\frac{3 \times 2}{3}$

$x=2, \frac{x}{2}=\frac{2}{2}=1$

∴ Length of two pieces are 2, 1 metres

Question 9

Given height of Anshul and Dhruv are 1.04 m and 78cm

Ratio of their height = $\frac{\text { Height of Anshul }}{\text { Height of Dhruv }}$

$=\frac{1.04 \mathrm{~m}}{78 \mathrm{~cm}}$

=$\begin{aligned} & \frac{1.04 \times 100}{78} \\=& \frac{104}{78} \\=& 4: 3 \end{aligned}$ $(\because 1 m=100 \mathrm{~cm})$

Question 10

Total money to be shared = Rs 180

Ratio of these children = $\frac{1}{3}: \frac{1}{4}: \frac{1}{6}$

LCM of 3, 4 and 6 is 12

$=\frac{1}{3} \times 12: \frac{1}{4} \times 12: \frac{1}{6} \times 12$

$=4: 3: 2$

Total sum of ratio = 4+3+2= 9

1st children share = $\frac{4}{9} \times 180=4 \times 20=\varepsilon 80 .$

2nd children share = $=\frac{3}{9} \times 180=3 \times 20=₹ 60$

3rd children share = $\frac{2}{9} \times 180=2 \times 20$=Rs 40

Question 11

Let the two part be 7x, 11x

Given difference of two parts = 20

i.e $11 x-7 x=20$

$4 x=20$

$x=\frac{20}{4}$

$x=5$

$\therefore 7x=7 \times 5=35 \quad ; 11 x=11 \times 5.55$

Sum of two numbers = 35+55= 90

Question 12

Let the total amount be Rs x

The amount has been divided in two parts in the ratio 9:13

Sum of ratios = 9+ 13= 22

According to given condition $\frac{13}{22}$ of Rs x=260

$\Rightarrow \frac{13}{22} \times x=260 \Rightarrow x=\frac{260 \times 22}{13}$

x = Rs 440

Hence, the total amount = Rs 440

Question 13

As the present ages of anjali and ashu are in the ratio 2:3 

Let their present ages be 2x, years and 3x years resp

After 5 years , 

The age of anjali will be (2x+ 5) years and the age of ashu will be (3x+ 5) years

According to given information , $\frac{2 x+5}{3 x+5}=\frac{3}{4}$

$3(3 x+5)=4(2 x+5)$

$9 x+15=8 x+20$

$9 x-8 x=20-15$

$x=5$

Hence, the presentage of anjali = $2\times 5$ = 10 years 

and the present age of ashu = $3\times 5$0 = 15 years 

Question 14

Let their present ages of A and B be 5x years and 6x years resp

Three years ago , 

The age of A will be (5x- 3) and the age of  B will be (6x- 3) years

According to given information, $\frac{5 x-3}{6 x-3}=\frac{4}{5}$

$5(5 x-3)=4(6 x-3)$

$25 x-15=24 x-12$

$25 x-24 x=15-12$

$x=3$

Hence, the present age of A = $5\times 3$= 15 years and the present age of B = $6\times 3$ = 18 years

Question 15

Let the numbers be 5 x, 6 x

2 is added to first =5 x+2

3 is added to second =6 x+3

Their ratio, $\frac{5 x+2}{6 x+3}=\frac{4}{5}$

$5(5 x+2)=4(6 x+3)$

$25 x+10=24 x+12$

$25 x-24 x=12-10$

$\begin{aligned} x=2 \Rightarrow 5 x &=5 \times 2=10 \\ 6 x &=6 x^{2}=12 \end{aligned}$

∴ The numbers are 10, 12

Question 16

Let the number of boys and girls be 7x, 6x

Total no. of students = 1430 

$7 x+6 x=1430$

$13 x=1430$

$x=\frac{1430}{13}$

$x=110$

∴ Number of boys = 7x = 7$\times 110$=770

Number of girls = 6x = $6 \times 110$ = 660

As , given 26 girls are admitted 

i.e 660+ 26 = 686

Let the new boys are admitted be x 

Ratio of number of boys to girls = 8:7

i.e $\frac{x+770}{686}=\frac{8}{7} .$

$x+770=\frac{8}{7} \times 686$

$x+770=784$

$x=784-7.70$

$x=14$ new boys are admitted.

Question 17

i) $5: 6$ or $6: 7$

$\frac{5}{6} ; \frac{6}{7}$

LCM of 6,7 is 42

i.e $\frac{5}{6} \times \frac{7}{7}=\frac{35}{42} ; \frac{6}{7} \times \frac{6}{6}=\frac{36}{42}$

As $36>35$, so $6: 7$ is greater than $5: 6$.


ii) $13: 24$ (or) $17: 32$

$\frac{13}{24}$ (or) $\frac{17}{32}$

$\mathrm{L} \mathrm{CM}$ of 24,32 is 96

i.e $\frac{13}{24} \times \frac{4}{4}=\frac{52}{96} ; \frac{17}{32} \times \frac{3}{3}=\frac{51}{96}$

As $52>51$, So $13: 24$ is greater than 17:32.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *