ML AGGARWAL CLASS 7 Chapter 4 Exponents and Powers EXERCISE 4.2

 EXERCISE 4.2

Question 1

As we know that $a^{m} \times a^{n}=a^{m+n}$

i) $2^{7} \times 2^{4}$

$=2^{7+4}=2^{11}$

ii) $p^{5} \times p^{3}=p^{5+3}=p^{8}$

iii) iii. $(-7)^{5} \times(-7)^{n}=(-7)^{5+11}=(-7)^{16}$

iv) $\left(\frac{3}{5}\right)^{6} \div\left(\frac{3}{5}\right)^{2}$
 
As we know $a^{m} \div a^{n}=a^{m-n}$

i.e $=\left(\frac{3}{5}\right)^{6-2}=\left(\frac{3}{5}\right)^{4}$

v) 
$\begin{aligned}(-6)^{7} \div(-6)^{3} \\=&(-6)^{7-3} \\=(-6)^{4} \end{aligned}$

Question 2

i) $5^{3} \times 5^{7} \times 5^{12}$

$=5^{3+7+12}$

$=5^{22}$


ii) $a^{5} \times a^{3} \times a^{7}$

$=a^{5+3+7}$

$=a^{15}$


iii)$\left(7^{12} \times 7^{3}\right) \div 7^{4}$

$=7^{12+3} \div 7^{4}$

$=7^{15} \div 7^{4}$

$=7^{15-4}$

$=7^{11}$


Question 3

i) $\left(2^{2}\right)^{100}$

As we $\left(a^{m}\right)^{n}=a^{m n}$

$=2^{2 \times 100}=2^{200}$


ii) $\left((-7)^{6}\right)^{5}$

$=(-7)^{6 \times  5}=(-7)^{30}$


iii) $\quad\left(3^{2}\right)^{5} \times\left(3^{4}\right)^{7}$

$=3^{2 \times 5} \times 3^{4 \times 7}$

$=3^{10} \times 3^{28}$

$=3^{10+28}$

$=3^{38}$


Question 4

i) $\frac{a^{3} \times a^{5}}{\left(a^{3}\right)^{2}}$

$=\frac{a^{3+5}}{a^{3 x^{2}}}$

$=\frac{a^{8}}{a^{6}}$

$=a^{8-6}=a^{2}$


ii) $\left(2^{3}\right)^{4} \div 2^{5}$

$=2^{3 \times 4} \div 2^{5}$

$=2^{12} \div 2^{5}$

$=2^{12-5}$

$=2^{7}$


iii. $\left[\left(6^{2}\right)^{3} \div 6^{3}\right] \times 6^{5}$

$=\left[6^{2 \times 3}+6^{3}\right] \times 6^{5}$

$=\left[6^{6} \div 6^{3}\right] \times 6^{5}$

$=6^{6-3} \times 6^{5}$

$=6^{3} \times 6^{5}$

$=6^{3+5}$

$=6^{8}$


Question 5

i) $5^{4} \times 8^{4}$

As we know that $a^{m} \times b^{m}=(a \times b)^{m}=(a b)^{m}$

$=(5 \times 8)^{4}$

$=40^{4}$


ii)
 $\begin{aligned} &(-3)^{6} \times(-5)^{6} \\ &=(-3 x-5)^{6} \\ &=15^{6} \end{aligned}$


iii) $\left(\frac{3}{10}\right)^{5} \times\left(\frac{2}{15}\right)^{5}$

$=\left[\frac{3}{10} \times \frac{2}{15}\right]^{5}$

$=\left[\frac{1}{25}\right]^{5}$


Question 6

$\frac{2^{4} \times 2 \times 3^{3} \times 7}{2^{3} \times 7^{4}}$

$=\frac{2^{4+1} \times 3^{3+6}}{2^{3} \times 3^{4}}$

$=\frac{2^{5}}{2^{3}} \times \frac{7^{9}}{7^{4}}$

$=2^{5-3} \times 9^{9-4}$

$=2^{2} \times 7^{5}$


ii) $\left(3^{2}\right)^{3} \times(-2)^{5}$

$\frac{-3^{3 \times 3} \times(-2)^{5}}{(-2)^{3}}$

$=3^{6} \times \frac{(-2)^{5}}{(-2)^{3}}$

$=3^{6} \times(-2)^{5-3}$

$=3^{6} \times(-2)^{2}$


iii) $\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}$

As $4=2^{2}$

$=\frac{2^{8} \times a^{5}}{\left(2^{2}\right)^{3} \times a^{3}}$

$=\frac{2^{8}}{2^{6}} \times \frac{a^{5}}{a^{3}}$

$=2^{8-6} \times a^{5-3}$

$=2^{2} \times a^{2}=(2 \times a)^{2}=4 a^{2}$


iv)$\frac{3 \times 7^{2} \times 11^{8}}{21 \times 11^{3}}$

As $21=7 \times 3$

$=\frac{3 \times 7^{2} \times 11^{8}}{3 \times 7 \times 11}$

$=\frac{7^{2}}{7^{1}} \times \frac{11^{8}}{11^{1}}$

$=7^{2-1} \times 11^{8-1}$

$=7^{1} \times 11^{7}$


v) $\left(2^{0}+3^{0}\right) 4$

As we rnow $a^{\circ}=1$

i.e $2^{\circ}=1 ; 3^{\circ}=1: 4^{\circ}=1$

$=(1+1) \times 1=2 \times 1=2$


vi)$3^{\circ} \times 4^{\circ} \times 5^{\circ}$

As we know $a^{\circ}=1$

$3^{0}=1 \quad ; 4^{\circ}=1 ; 5^{\circ}=1$

$=1\times1\times 1$

$=1$


Question 7

i) $\frac{25}{64}$ 

$\begin{array}{r|l}2&64\\ \hline 2& 32 \\ \hline 2&16\\ \hline 2& 8\\ \hline 2&4\\ \hline &2 \end{array}$

$=2 \times 2 \times 2 \times 2 \times 2 \times 2$

$=2^{6}$

$\begin{array}{r|l}5&25\\ \hline &5\end{array}$

$=5 \times 5$

$=5^{2}$

$=\frac{5^{2}}{2^{6}}$


ii. $\frac{-125}{216}$

$\begin{array}{r|l}5&125\\ \hline 5&25\\ \hline &5\end{array}$

$=5 \times 5 \times 5$

$=5^{3}$

$\begin{array}{r|l}2&216\\ \hline 2&72 \\ \hline 2&36\\ \hline 2& 18\\ \hline 2&9\\ \hline &3 \end{array}$

$=2 \times 2 \times 2 \times 3 \times 3 \times 3$

$=2^{3} \times 3^{3}=(3 \times 2)^{3}$

$=6^{3}$

$=\frac{5^{3}}{6^{3}}$

$=\left(\frac{-5}{6}\right)^{3}$


iii $\frac{-343}{729}$

$\begin{array}{r|l}7&343\\ \hline 7&49\\ \hline &7\end{array}$

$=7 \times 7 \times 7$

$=7^{3}$


$\begin{array}{r|l}9&729\\ \hline 9&81\\ \hline &9\end{array}$

$=9 \times 9 \times 9$

$=9^{3} .$

$=\frac{-7^{3}}{9^{3}}$

$=\left(\frac{-7}{9}\right)^{3}$


Question 8

i)
 $\begin{aligned} & \frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 3} \\=& \frac{2^{5 \times 2} \times 3^{3}}{\left(2^{3}\right)^{3} \times 7} \\=& \frac{2^{10} \times 7^{3}}{2^{9} \times 7^{1}} \end{aligned}$

$=2^{10-9} \times 3^{3-1}$

$2^{1} \times 3^{2}=2 \times 49=98$


ii) $\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}}$

$10=5 \times 2 ; 25=5 \times 5=5^{2}$

$\frac{5^{2} \times 5^{2} \times t^{8}}{(5 \times 2)^{3} \times t^{4}}$

$=\frac{5^{2+2} \times t^{8}}{5^{3} \times 2^{3} \times t^{4}}$

$=\frac{5^{4}}{5^{3}} \times \frac{t^{8}}{t^{4}} \times \frac{1}{2^{3}}$

$=\frac{5^{4-3} \times t^{8-4}}{2^{3}}$

$\frac{5 \times  t^{4}}{2^{3}} \cdot=\frac{5 \times  t^{4}}{8}$


iii) $\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}$

As $10=5 \times 2 ; 25=5 \times 5 ; 6=3 \times 2$

$=\frac{3^{5} \times(5 \times 2)^{5} \times 5 \times 5}{5^{7} \times 6^{5}}$

$=\frac{3 \times 5^{5} \times 2^{5} \times 5^{2}}{5^{7} \times(3 \times 2)^{5}}$

$=\frac{3^{5} \times 2^{5} \times 5^{5+2}}{5^{7} \times 3^{5} \times 2^{5}}$

$=\frac{3^{5}}{3^{5}} \times \frac{2^{5}}{2^{5}} \times \frac{5^{7}}{5^{7}}$

$=3^{5-5} \times 2^{5-5} \times 5^{7-7}$

$=3^{0} \times 2^{\circ} \times 5^{\circ}$

$=1 \times 1 \times 1=1$


iv) $\left(\frac{-3}{5}\right)^{-3}$

As we know $a^{-n}=\frac{1}{a^{n}}$

$=\frac{1}{\left(\frac{-3}{5}\right)^{3}}$

$=\left(\frac{-5}{3}\right)^{3}$

$=\frac{(45)^{3}}{(3)^{3}}$

$=\frac{-5 \times -5 \times-5}{3 \times 3 \times 3}$

$=\frac{-125}{27}$


Question 9

i)
$\begin{aligned} &\left[\frac{-1}{2}\right]^{5} \times 2^{6} \times\left(\frac{3}{4}\right)^{3} \\=& \frac{(-1)^{5} \times 2^{6} \times 3^{3}}{(-2)^{5} \times 4^{3}} \end{aligned}$

$2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2$

$=64$

$3^{3}=3 \times 3 \times 3=27$

$2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$

$4^{3}=4 \times 4 \times 4=64$
$=\frac{1 \times 64 \times 27}{32 \times 64}$

$=\frac{27}{32}$


ii) $\left[\left(\frac{-3}{4}\right)^{3} \div\left(-\frac{5}{2}\right)^{3}\right] \times\left(-\frac{2}{3}\right)^{4}$

$=\left(\frac{3}{42} \times \frac{2}{5}\right)^{3} \times\left(-\frac{2}{3}\right)^{4}$

$=\frac{3^{3}}{10^{3}} \times \frac{-2 \times -2 \times-2 \times -2}{3 \times 3 \times 3 \times 3}$

$\frac{27 \times 16}{1000 \times 81}$

$=\frac{2}{375}$


Question 10

i) $\left(\frac{3}{2}\right)^{-1} \div\left(-\frac{2}{5}\right)^{-1}$

$\left(\frac{3}{2}\right)^{-1}=\frac{1}{\left(\frac{3}{2}\right)}=\frac{2}{3}$

$\left(\frac{-2}{5}\right)^{-1}=\frac{1}{\left(\frac{-2}{5}\right)}=\frac{5}{-2}$

$=\frac{2}{3} \times \frac{5}{-2}$

$=\frac{-5}{3}$


ii. $\left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-1}\right]^{-2}$

$=\left(-\frac{1}{4}\right)^{2 \times-1 \times-2}$

$\left(\frac{-1}{4}\right)^{4}=\frac{(-1)^{4}}{4^{4}}$

$=\frac{-1 \times-1 \times -1 \times-1}{4 \times 4 \times 4\times 4}$

$=\frac{1}{256}$


Question 11

$\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}+\left(\frac{1}{5}\right)^{-2}-\left(\frac{1}{6}\right)^{-2}$

As we know $a^{-n}=\frac{1}{a^{n}}$

$\frac{1}{\left(\frac{1}{3}\right)^{2}}+\frac{1}{\left(\frac{1}{4}\right)^{2}}+\frac{1}{\left(\frac{1}{5}\right)^{2}}-\frac{1}{\left(\frac{1}{6}\right)^{2}}$

$=3^{2}+4^{2}+5^{2}-6^{2}$

$=9+16+25-36$

$=50-36$

$=14 .$


Question 12


i) $108 \times 192$

$\begin{array}{r|l}3&108\\ \hline 3&36 \\ \hline 3&12\\ \hline 2& 4\\ \hline &2 \end{array}$

$\begin{aligned} 108 &=3 \times 3 \times 3 \times 2 \times 2 \\ &=2^{2} \times 3^{3} \end{aligned}$

$\begin{array}{r|l}3&192\\ \hline 2&64\\ \hline 2&32\\ \hline 2& 16\\ \hline 2&8\\ \hline 2&4\\ \hline&2 \end{array}$

$\begin{aligned} 192=& 2 \times 2 \times 2 \times 2 \times 2 \times 3 \\ &=2^{5} \times 3^{1} \end{aligned}$

$\begin{aligned} 108 \times 192=& 2^{2} \times 3^{3} \times 2 \times 3^{5} \times 1 \\ &=2^{2+5} \times 3^{3+1} \\ &=2^{7} \times 3^{4} \end{aligned}$


ii)$729 \times 64$

$\begin{array}{r|l}3&729\\ \hline 3&243\\ \hline 3&81\\ \hline 3& 27\\ \hline 3&9\\ \hline&3 \end{array}$

$729=3 \times 3 \times 3 \times 3 \times 3 \times 3=3^{6}$


$\begin{array}{r|l}2&64\\ \hline 2&32\\ \hline 2&16\\ \hline 2& 8\\ \hline 2&4\\ \hline 2&2\\ \hline&1 \end{array}$

$64=2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{6}$


$729 \times 64=2^{6} \times 3^{6}$


iii) $384 \times 147$

$\begin{array}{r|l}3&384\\ \hline 2&128\\ \hline 2&64\\ \hline 2&32\\ \hline 2&16\\ \hline 2&8\\ \hline2&4\\ \hline &2 \end{array}$

$\begin{aligned} 384 &=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ &=2^{7} \end{aligned}$


$\begin{array}{r|l}3&147\\ \hline 7&49\\ \hline7 &7\\ \hline &1\end{array}$

$\begin{aligned} 147 &=3 \times 7 \times 7 \\ &=3 \times 7^{2} \end{aligned}$


$384 \times 147=2^{7} \times 3 \times 7^{2}$


Question 13

i) $3^{3} \times 2^{2}+2^{2} \times 5^{\circ}$

$\begin{array}{r|l}2&112\\ \hline 2&56\\ \hline 2&28\\ \hline 2&14\\ \hline 2&7\\ \hline &7 \end{array}$

$=3 \times 3 \times 3 \times 2 \times 2+2 \times 2 \times 1$

$=108+4$

$=112$

$=2 \times 2 \times 2 \times 2 \times 7$

$=2^{4} \times 7^{1}$

ii)
 $\begin{aligned} & 9^{2}+11^{2}-2^{2} \times 3 \times 17^{\circ} \\ & 2^{2} \times 3 \times 17^{\circ}=4 \times 3 \times 1=12 \end{aligned}$

$9^{2}=9 \times 9=81$

$11^{2}$ = $11\times 11$ = 121

$=81+121-12$

$=202-12$

$=190 .$


Question 14

i) Let the number multiplied be x 

$\therefore \quad x \times 3^{4}=3^{7}$

$x=\frac{3^{3}}{3^{4}}$

$x=3^{7-4}$

$x=3^{3}=3 \times 3 \times 3$

$x=27$

ஃ 27 should be multiplied in order to get $3^{7}$


ii) Let the number multiplied be x 

$(-6)^{-1} \times x=10^{-1}$

$\frac{1}{-6} \times x=\frac{1}{10}$

$x=\frac{-6}{10}$

$x=\frac{-3}{5}$

So, $\frac{-3}{5}$ Should be multiplied in order to get $10^{-1} .$


Question 15

$\left(\frac{12}{13}\right)^{4} \times\left(\frac{13}{12}\right)^{-8}=\left(\frac{12}{13}\right)^{2 x}$

$\left(\frac{12}{13}\right)^{4} \times \frac{1}{\left(\frac{13}{12}\right)^{8}}=\left(\frac{12}{13}\right)^{2 x}$

$\left(\frac{12}{13}\right)^{4} \times\left(\frac{12}{13}\right)^{8}=\left(\frac{12}{13}\right)^{2 x}$

$\left(\frac{12}{13}\right)^{4+8}=\left(\frac{12}{13}\right)^{2 x}$

$\left(\frac{12}{13}\right)^{12}=\left(\frac{12}{13}\right)^{2 x}$

Base equal , exponent should be same 

2 x=12

∴ x=6

No comments:

Post a Comment

Contact Form

Name

Email *

Message *