ML AGGARWAL CLASS 7 Chapter 4 Exponents and Powers EXERCISE 4.1

 EXERCISE 4.1

Question 1

(i) $3^{7}$

Base $=3 \quad ;$ Exponent $=7$


ii) $(-7)^{5}$

Base $=-7 ;$ Exponent $=5$


iii) $\left(\frac{2}{5}\right)^{11}$

Base $=\frac{2}{5}$; exponent $=11$


iv) Base $=6$;   Exponent $=8$

Exponent form = Base exponent $=6^{8}$


Question 2

i) $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64$

ii) $5^{5}=5 \times 5 \times 5 \times 5 \times 5=3125 .$

iii) $(-6)^{4}=-6 x-6 x-6 x-6=1296$

iv) $\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}=\frac{16}{81}$

v) $\left(-\frac{2}{3}\right)^{5}=\frac{(-2)^{5}}{3^{5}}=\frac{-2 \times-2 \times-2 \times -2 \times -2}{3 \times 3 \times 3 \times 3 \times 3}=-\frac{32}{729}$

vi) $\quad(-2)^{9}=-2 \times-2 \times-2 \times-2 \times-2 \times-2 \times-2 \times-2 \times-2$

=512


Question 3

i) $6 \times 6 \times 6 \times 6 \times 6=6^{5}$

ii) $t \times t \times t=t^{3}$

(iii) 2 $\times$ 2 $\times$ a $\times$ a $\times$ a $\times$  a $=2^{2} \times a^{4}$

iv) $\operatorname{a\times a\times a\times }c \times c \times c \times c=a^{3} \times c^{4} \times  d^{1}$


Question 4

i) $7 \times 10^{3}=7 \times 1000=7000$

ii) $2^{5} \times 9=2 \times 2 \times 2 \times 2 \times 2 \times 9=288$

iii) $3^{3} \times 10^{4}=3 \times 3 \times 3 \times 10 \times 10 \times 10 \times 10=270,000$


Question 5

i)
 $\begin{aligned} &(-3) \times(-2)^{3} \\ &=-3 x-2 x-2 x-2 \\ &=24 \end{aligned}$


ii) $(-3)^{2} \times(-5)^{2}$

$=-3 \times -3 \times -5 \times -5$

$=225$

iii)
 $\begin{aligned}(&-2)^{3} \times(-10)^{4} \\ &=-2 \times -2 \times-2 \times -10 \times -10 \times -10 \times -10 \\ &=-80,000 \end{aligned}$

iv) $(-1)^{9}=-1 \times -1 \times -1 \times -1 \times -1 \times -1 \times -1 \times -1 \times -1=-1$

v) $25^{2} \times(-1)^{31}=25 \times 25 \times -1=-625$


Question 6

i) $4^{3}=4 \times 4 \times 4=64 ; 3^{4}=3 \times 3 \times 3 \times 3=81$

$\therefore 3^{4}$ is greater

(ii) $7^{3}$ or $3^{\text {7 }}$

$7^{3}=7 \times 7 \times 7=343 ; 3^{7}=3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3=2187$

$\therefore 3^{7}$ is greater

iii) $4^{5}=4 \times 4 \times 4 \times 4 \times 4=1024 ; 5^{4}=5 \times 5 \times 5 \times 5=625$

$\therefore 4^{5}$ is greater

iv) $2^{10}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=1024 $

;$10^{2}=10 \times 10-100$

$\therefore 2^{10}$ is greater.

Question 7

i) 8

 $\begin{array}{r|l}2&8\\ \hline 2& 4 \\ \hline&2\end{array}$

$=2 \times 2 \times 2$

$=2^{3}$

ii) 128 

$\begin{array}{r|l}2&128\\ \hline 2& 64 \\ \hline 2&32\\ \hline 2& 16\\ \hline 2& 4 \\\hline&2\end{array}$

$-2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$=2^{7}$

iii)  1024

 $\begin{array}{r|l}2&1024\\ \hline 2& 512 \\ \hline 2&256\\ \hline 2& 128\\ \hline 2& 64 \\ \hline 2&32\\ \hline2&16 \\ \hline 2&8\\ \hline 2&4 \\ \hline&2\end{array}$

$=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$=2^{10}$

Question 8

Let 
$\begin{aligned}(-2)^{x} &=16 \\(-2)^{x} &=(-2)^{4} \end{aligned}$

Base is equal So, exponent should be same 

i.e x =4

∴ Up to 4 should be raised 

Question 9

i) $9=-3 \times -3=(-3)^{2}$

ii) $-27=-3  \times-3  \times-3=(-3)^{3}$

iii) $81=-3  \times-3  \times-3  \times-3=(-3)^{4}$

Question 10

i) 
 $\begin{aligned} 7^{x} &=343 \\ & 3^{x}=3^{6} \end{aligned}$

Base equal , exponent is same

i.e x= 6


ii) $3^{x}=729$

$\begin{array}{r|l}3&729\\ \hline 3& 243 \\ \hline 3&81\\ \hline 3& 27\\ \hline 3& 9 \\\hline&3\end{array}$

$3^{x}=3^{6}$

Base equal , exponent is same 

i.e x = 6

iii) $(-8)^{x}=-512$

$(-8)^{x}=-8 \times -8 \times-8$

 $\begin{array}{r|l}8&512\\ \hline 8& 64 \\ \hline&8\end{array}$

$(-8)^{x}=(-8)^{3}$

Base is equal , exponent should be same 

x = 3

iv) $(-4)^{x}=-1024$

$(-4)^{x}=-4 \times -4 \times -4 \times -4 \times -4$

$\begin{array}{r|l}4&1024\\ \hline 4& 256 \\ \hline 4&64\\ \hline 4& 16\\ \hline&4\end{array}$

$(-4)^{x}=(-4)^{5}$

Base is equal , exponent should be same 

x = 5

v) $\left(\frac{2}{5}\right)^{x}=\frac{32}{3125}$

$\left(\frac{2}{5}\right)^{x}=\frac{2 \times 2 \times 2 \times 2 \times 2}{5 \times 5 \times 5 \times 5 \times 5}$

$\left(\frac{2}{5}\right)^{x}=\frac{2^{5}}{5^{5}}$

$\left(\frac{2}{5}\right)^{x}=\left(\frac{2}{5}\right)^{5}$

Base equal , exponent should be same 

i.e x = 5


vi) $\left(\frac{-3}{4}\right)^{x}=\frac{-243}{1024}$

$\left(-\frac{3}{4}\right)^{x}=\frac{-3 \times-3 \times-3 \times-3 \times-3}{4 \times 4 \times 4 \times 4 \times 4}$

$\left(-\frac{3}{4}\right)^{x}=\frac{(-3)^{5}}{(4)^{5}}$

$\left(\frac{-3}{4}\right)^{x}=\left(\frac{-3}{4}\right)^{5}$

Base is equal, exponent should be same 
ஃ x = 5

Question 11


i) 72

$\begin{array}{r|l}2&72\\ \hline 2& 36 \\ \hline 2&18\\ \hline 3& 9\\ \hline&3\end{array}$

$=2 \times 2 \times 2 \times 3 \times 3$

$=2^{3} \times 3^{2}$

ii) 360

$\begin{array}{r|l}2&360\\ \hline 2& 180 \\ \hline 2&90\\ \hline 2& 45\\ \hline3&45\\ \hline 5\end{array}$

$=2 \times 2 \times 2 \times 3 \times 3 \times 5$

$=2^{3} \times 3^{2} \times 5^{1}$


iii) 405

$\begin{array}{r|l}5&405\\ \hline 3& 81 \\ \hline 3&27\\ \hline 3& 9\\ \hline 3\end{array}$

$3\times 3\times 3\times 3\times 5$

$=3^{4} \times 5^{1}$


iv) 540 

$\begin{array}{r|l}3&540\\ \hline 3& 180 \\ \hline 3&60\\ \hline 3& 20\\ \hline2&4\\ \hline 2\end{array}$

$=2 \times 2 \times 3 \times 3 \times 3 \times 5$

$=2^{2} \times 3^{3} \times 5^{1}$


v) 2280 .

$\begin{array}{r|l}2&2280\\ \hline 2& 1140 \\ \hline 2&570\\ \hline 5& 285\\ \hline3&57\\ \hline 19\end{array}$

$=2 \times 2 \times 2 \times 3 \times 5 \times 19$

$=23 \times 3 \times 5^{1} \times 19^{1}$


vi) 3600 

$\begin{array}{l|l}3 & 3600 \\\hline 3 & 1200 \\\hline 2 & 400 \\\hline 2 & 200 \\\hline 2 & 100 \\\hline 5 & 50 \\\hline&5\end{array}$

$=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$

$=2^{4} \times 3^{2} \times 5^{2}$


vii) 4725

$\begin{array}{l|l}5 & 4725 \\\hline 5 & 945 \\\hline 3 & 189 \\\hline 3 & 63 \\\hline 3 & 21\\\hline&7\end{array}$

$=3 \times 3 \times 3 \times 5 \times 5 \times 7$

$=3^{3} \times 5^{2} \times 7$


viii) 8400

$\begin{array}{l|l}5 & 8400 \\\hline 5 & 1680 \\\hline 3 & 336 \\\hline 2 &112 \\\hline 2 & 56\\\hline2&28\\\hline 2&14 \\\hline &7\end{array}$

$=2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7$

$=2^{4} \times 3^{1} \times 5^{2} \times 7$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *