ML AGGARWAL CLASS 7 Chapter 3 Rational Numbers Exercise 3.3

  Exercise 3.3

Question 1

(i)First express $\frac{-5}{11}$ as a rational numbers with positive denominator 

It is already with positive denominator 

Sum = $\frac{3}{11}+\frac{-5}{11}=\frac{3+(-5)}{11}=\frac{-2}{11}$


ii) We have $\frac{5}{-9}=\frac{5 \times(-1)}{-9 \times(-1)}=\frac{-5}{9}$.

Sum $=\frac{4}{9}+\frac{-5}{9}=\frac{4+(-5)}{9}=\frac{4-5}{9}=-\frac{1}{9} .$


iii) We have $\frac{5}{-7}=\frac{5 \times(-1)}{-7 x-1}=\frac{-5}{7}$

$\frac{-2}{-7}=\frac{-2 \times-1}{-7 \times-1}=\frac{2}{7}$

$\Sum=\frac{-5}{7}+\frac{2}{7}=\frac{-5+2}{7}=\frac{-3}{7}$


iv) $\frac{-2}{5}, \frac{3}{4}$

Given rational number have different denominators 

LCM of their denominator 5 and 4 is 20

To write the rational number with this LCM i.e 20as their denominator , we have 

$\frac{-2}{5}=\frac{-2 \times 4}{5 \times 4}=-\frac{8}{20}$ and $\frac{3}{4}=\frac{3 \times 5}{4 \times 5}=\frac{15}{20}$.

∴ Sum =$\frac{-8}{20}+\frac{15}{20}=\frac{-8+15}{20}=\frac{7}{20}$


Question 2

 i)Given rational numbers have different denominators 

LCM of denominators 4 and 8 is 8 

In order to have their denominators as LCM i.e 8 we have 

$+\frac{27}{-4}=\frac{27 \times(-1)}{-4 \times(-1)}=-\frac{27}{4}$

$\frac{-27}{4}+\frac{-15}{8}=\frac{-27 \times 2}{4 \times 2}+\frac{-15}{8}$

$=\frac{-54}{8}+\frac{-15}{8}$

$=\frac{-54-15}{8}=\frac{-69}{8}$


ii) LCM of denominators 8 and 18 is 72

In order to have their denominators as LCM i.e 72 we have 

$\begin{aligned} \frac{-1}{18}+\frac{-3}{8} &=\frac{-1 \times 4}{18 \times 4}+\frac{-3 \times 9}{8 \times 9} \\ &=\frac{-4}{72}+\frac{-27}{72} \end{aligned}$

$=\frac{-4+(-27)}{72}$

$=\frac{-31}{72}$


iii)
 $\begin{aligned} &-3 \frac{1}{6}+2 \frac{3}{8} \\ &-3 \frac{1}{6}=\frac{-19}{6} ; 2 \frac{3}{8}=\frac{19}{8} \end{aligned}$

LCM of 6 and 8 is 24

In order to have their denominator is their LCM i.e 24

We have 

$-3 \frac{1}{6}+2 \frac{3}{8}=\frac{-19}{6}+\frac{19}{8}=\frac{-19 \times 4}{6 \times 4}+\frac{19 \times 3}{8 \times 3}$

$=\frac{-76}{24}+\frac{57}{24}$

$=\frac{-76+57}{24}$

$=\frac{-19}{24} .$


 iv) $-2 \frac{4}{5}+4 \frac{3}{10}$

$-2 \frac{4}{5}=\frac{-14}{5}$ and $4 \frac{3}{10}=\frac{43}{10}$

LCM of 5 and 10 is 10

In order to have their denominators is their LCM i.e 10 

We have 

$-2 \frac{4}{5}+4 \frac{3}{10}=\frac{-14}{5}+\frac{43}{10}=\frac{-14 \times 2}{5 \times 2}+\frac{43 \times 1}{10 \times 1}$

$=\frac{-28}{10}+\frac{43}{10}$

$=\frac{-28+43}{10}$

$=\frac{15}{10}=\frac{3}{2} .$


Question 3

i) $\frac{4}{13}-\frac{-6}{13}=\frac{4}{13}+$ additive inverse of $\left(\frac{-6}{13}\right)$

$=\frac{4}{13}+\frac{6}{13}=\frac{4+6}{13}=\frac{10}{13} .$


ii) $\frac{-2}{3}-\frac{-1}{2}=\frac{2}{3}+$ additive invesse of $\left(\frac{-1}{2}\right)$

$=\frac{-2}{3}+\frac{1}{2} \quad(\mathrm{LCM}$ of 3 and 2 is 6 $)$

$=\frac{-2 \times 2+1 \times 3}{6}$

$=\frac{-4+3}{6}=\frac{-1}{6}$


iii) $\frac{-2}{3}-\frac{5}{9}=\frac{-2}{3}+$ additive invesse of $\left(\frac{+5}{9}\right)$

$=\frac{-2}{3}+\frac{-5}{9}$ (LCM of 3,9 is 9)

$=\frac{-2 \times 3+(-5 \times 1)}{9}$

$=\frac{-6-5}{9}=\frac{-11}{9} .$


Question 4

i) $\frac{5}{63}-\left(\frac{-6}{21}\right)$

$=\frac{5}{63}+\frac{6}{21}$

LCM of 21,63 is 63

$=\frac{5 \times 1+6 \times 3}{63}=\frac{5+18}{63}=\frac{23}{63}$


ii) $\frac{-6}{3}-\left(\frac{-7}{15}\right)$

$=\frac{-6}{3}+\frac{7}{15}$

LCM of 3,15 is 15

$=\frac{-6 \times 5+7 \times 1}{15}=\frac{-30+7}{15}=\frac{-23}{15}$


iii) $3 \frac{1}{8}-\left(-1 \frac{5}{6}\right)$

$\begin{aligned}=\frac{25}{8}+\frac{11}{6} \\ & \mathrm{LCM} \text { of } 8,6 \text { is } 24 \end{aligned}$

$=\frac{25 \times 3+1.1 \times 4}{24}$

$=\frac{75+44}{24}$

$=\frac{119}{24}$


Question 5

Let the other rational number be 'x'

Given Sum = $\frac{2}{5}$

1.e $x+\frac{-4}{9}=\frac{2}{5}$

$x=\frac{2}{5}-\left(-\frac{4}{9}\right)$

$x=\frac{2}{5}+\frac{4}{9}$

LCM of 5,9 is 45

$x=\frac{2 \times 9+4 \times 5}{45}$

$x=\frac{18+20}{45}$

$x=\frac{38}{45}$

∴ The other rational number is $\frac{38}{45}$


Question 6

Let the rational added to $\frac{-5}{2}$ is " $x^{\prime}$

Given the result of sum is $-frac{-7}{8} .$

i.e $x+\left(\frac{-5}{12}\right)=\frac{-7}{8}$

$x=\frac{-7}{8}-\left(\frac{-5}{12}\right)$

$x=\frac{-7}{8}+\frac{5}{12}$

$\mathrm{Lcm}$ of 8,12 is 24

$x=\frac{-7 \times 3+5 \times 2}{24}$

$x=\frac{-21+10}{24}$

$x=\frac{-11}{24}$

∴ Therefore $\frac{-11}{24}$ is to be added to $\frac{-5}{12}$  to get $\frac{-7}{8}$

Question 7

Let the rational number to be subtracted from $\frac{-2}{3}$ be $x^{\prime}$

The result is $\frac{-5}{6} .$

i.e $x-\left(\frac{-2}{3}\right)=-\frac{5}{6}$

$x=\frac{=5}{6}+\left(-\frac{2}{3}\right) .$

LCM of 3 and 6 is 6

$x=\frac{-5 \times 1+-2 \times 2}{6}$

$x=\frac{-5+(-4)}{6}$

$x=\frac{-5-4}{6}=\frac{-9}{6}$

$x=-\frac{3}{2}$

∴ $\frac{-3}{2}$ should be substracted from $\frac{-2}{3}$ to get $\frac{-5}{6}$.


Question 8

i) $\frac{2}{3} \times-\frac{7}{8}=\frac{2 x-7}{3 \times 8}=\frac{-7}{12}$

ii) $\frac{-6}{7} \times \frac{5}{7}=\frac{-6 \times 5}{7 \times 7}=-\frac{30}{49}$

iii) $\frac{-2}{9} \times(-5)=\frac{-2 \times-5}{9}=\frac{10}{9}$.

iv) $\frac{-5}{11} \times \frac{11}{-5}=+\frac{8 \times 11}{4 \times+5}=1$

v) $\frac{8}{35} \times \frac{21}{-32}=\frac{18 \times 21}{35 \times-32}=\frac{3}{-20}$

Vi) $\frac{-105}{128} \times\left(-1 \frac{29}{35}\right)=-\frac{105}{128} \times\frac{-64}{35}$

$=\frac{3}{2}$


Question 9

i) $(-6) \div \frac{2}{5}$

$=\frac{(-6)}{(2 / 5)}=\frac{-6 \times 5}{21}=-15$


ii) $\frac{-1}{10} \div \frac{-8}{5}$

$=\frac{(-1 / 10)}{(-8 / 5)}=+\frac{1}{10} \times \frac{5}{+8}$

$=\frac{1}{2 \times 8}=\frac{1}{16}$


iii) $\frac{-65}{14} \div \frac{13}{-7}$

$\begin{aligned}=\frac{-65 / 14}{13 /-7} &=\frac{-65}{14} \times \frac{-7}{13} \\ &=\frac{5}{2} \end{aligned}$


iv) 
$\begin{aligned} &(-6) \div 3 \frac{3}{5} \\ &=(-6) \div \frac{18}{5} \end{aligned}$

$=\frac{-6}{(18 / 5)}=\frac{-6 \times 5}{18}=\frac{-5}{3} .$


V) $\frac{-48}{49} \div \frac{72}{-35}$

$=-\frac{48 / 49}{72 /-35}$

$=\frac{-48}{49} \times \frac{-35}{72}$ = $\frac{10}{21}$


vi) $3 \frac{1}{7} \div\left(\frac{-33}{34}\right)$

$=\frac{22}{7} \div\left(\frac{-33}{34}\right)$

$=\frac{22 / 7}{-33 / 34}=\frac{22}{7} \times \frac{34}{-33}$

$=\frac{68}{-21}$


Question 10

Let the other rational number be 'x '

product of them is $\frac{18}{35}$

i.e $\frac{-2}{5} \times x=\frac{18}{35}$

x=$\frac{18 \times 5}{35 \times -2}$

$x=\frac{9}{-7}=\frac{-9}{7} .$

∴ The other rational number is $\frac{-9}{7}$


Question 11

i) $\left(\frac{13}{21} \div \frac{39}{42}\right) \times\left(\frac{-3}{5}\right)$

$=\frac{13 / 21}{39 / 42} \times \frac{-3}{5}$

$=\frac{13}{21} \times \frac{42}{39} \times \frac{-3}{5}=\frac{-2}{5}$


(ii) $\left(-5 \frac{5}{21}\right) \div\left(\frac{7}{11} \times \frac{5}{12}\right)$

$=\frac{-110}{21} \div \frac{35}{132}$

$=\frac{-110 / 21}{35 / 132}$

$\frac{-110}{21} \times \frac{132}{35}$

$=\frac{-22 \times 44}{7 \times 7}=\frac{-768}{49}$


Question 12

i) $\frac{3}{13} \div \frac{-4}{65}$

$=\frac{(3 / 13)}{(-4 / 65)}$ = $\frac{3}{13} \times \frac{65}{-4}$

$=\frac{15}{-4}=\frac{-15}{4}$

∴ The reciprocal is $\frac{-4}{15} .$


ii)$\left(-8 \times \frac{12}{15}\right)-\left(-3 \times \frac{2}{9}\right)$

$=(-4)-\left(-frac{-2}{3}\right)$

$\begin{aligned}=-4+\frac{2}{3} &=\frac{-12+2}{3} \\ &=\frac{-10}{3} . \end{aligned}$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *