ML AGGARWAL CLASS 7 Chapter 16 Perimeter and Area Exercise 16.3

 

  Exercise 16.3

Question 1

(i) r = 7cm

Circumference of Circle = $2 \pi r$

$=2 \times \frac{22}{7} \times 7$

Circumference of circle = 44cm

 (ii) r= 21cm

Circumference of circle = $2 \pi r$

$=2 \times \frac{22}{7} \times 21$

=$2 \times 22 \times 3$

Circumference of circle = 132cm

(iii)r= 28m

Circumference of circle = $2 \pi r$

$=2 \times \frac{22}{1} \times 28$

$=2 \times 22 \times 4$

Circumference of circle = 174m

(iv) r = 3.5cm

Circumference of circle = $2 \pi r$

$=2 \times \frac{22}{7} \times 3.5$

Circumference of circle $=22 \mathrm{cm}$

Question 2

(i) $r=14 \mathrm{~mm}$

Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times 14 \times 14$

Area of circle = 616$m^{2}$
 

(ii) $d=49 m . \Rightarrow r=\frac{d}{2}$

$r= \frac{49}{2}=24.5 \mathrm{~m}$

Area of Circle  $=\pi r^{2}$

$=\frac{22}{7} \times 24.5 \times 24.5$

Area of circle = 1886.5$m^{2}$


(iii) Dimension  (d)= 9.8m

$r=\frac{d}{2}$

$r=\frac{9.8}{2}$

$r=4.9 \mathrm{~m}$

Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times 4.9 \times 4.9$

Area of circle= 75.46 $m^{2}$


(iv) r=5cm

Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times 5 \times 5$

Area of circle $=78.57 \mathrm{~cm}^{2}$

Question 3

Given 

Radius of circle (r) =20cm

Circumference of circle = $2 \pi r$

$=2 \times 3.14 \times 20$

Circumference of circle = $125.6 \mathrm{cm}$

Area of circle = $ \pi r^{2}$

=$3.14 \times 20 \times 20$

Area of circle $=1256 \mathrm{~cm}^{2}$

Question 4

Radius of minute hand = 1.4m

distance covered by minute hand tip in 1 hour= Circumference of circle of radius 1.4m

= $2 \pi r$

=$2 \times \frac{22}{7} \times 1.4$

=$8.8 \mathrm{~m}$

Question 5

Diameter of garden = 21m

Radius (r)= $\frac{21}{2}=10.5 m$

Circumference of garden = $2 \pi r$

$=2 \times 22 \times 10.5$

$=66 \mathrm{~m}$

Length of rope = 

$66 \times2=132 m(\because$ For 2 rounds $)$

Rate of cost of rope = Rs 4\m

Total cost of rope = $4 \times 132$

$=₹ 528$

∴Cost of rope = Rs 528

Question 6

Given 

Circumference of circle exceeds diameter by 30cm

$2 \pi r=d+30$

$2 \pi r=2 r+30$

$2 \pi r-2 r=30$

$2 r(11-1)=30$

$2 r(n-1)=30$

$2 r\left(\frac{23}{7}-1\right)=30$

$2 \gamma\left(\frac{15}{7}\right)=30$

$r=\frac{30 \times 7}{2 \times 15}$

$r=7 \mathrm{cim}$

∴ Radius of circle = 7cm

Question 7

Given Circumference of circle = 44cm

$\begin{aligned} 2 \pi r &=44 \\ \pi r=& \frac{44}{2} \\ \pi r &=22 \\ r &=\frac{22}{\pi} \\ r &=\frac{22}{\frac{22}{7}} \\ r &=7 \mathrm{~cm} \end{aligned}$

Diameter $=2 r=2 \times 7=14 \mathrm{~cm}$

Question 8

Given Circumference of Circle= 31.4cm

$\begin{aligned} 2 \pi r &=31.4 \\ r &=\frac{31.4}{2 \times \pi} \\ &=\frac{31.4}{2 \times 314} \\ r &=5 \mathrm{~cm} \end{aligned}$

Radius =5cm

$\begin{aligned} \text { Area } &=\pi r^{2} \\ &=3.14 \times 5^{2} \\ \text { Area } &=78.5 \mathrm{~cm}^{2} \end{aligned}$

Question 9

 Given 

Area of Circle = $144 \pi \mathrm{Cm}^{2}$

$\begin{aligned} r^{2} &=144 \\ r &=\sqrt{144} \\ r &=12 \mathrm{~cm} \end{aligned}$

radius = 12cm

Circumference of circle =$2 \pi r$

$2 \times \pi \times 12$

$24 \pi \mathrm{cm}$

∴ Circumference of Circle = $24 \pi \mathrm{cm}$

Question 10

Diameter of Wheel = 56cm

Radius of Wheel = $\frac{56}{2}=28 \mathrm{~cm}$

Circumference of wheel = $2 \pi r$

$=2 \times \pi \times 28$

$=2 \times \frac{22}{7} \times 28$

Circumference of wheel = $176 \mathrm{~cm}$

No. of rotations =  $\frac{Distance covered by car}{Distance for one rotation}$

 =$\frac{88 \times 10^{3} \times 10^{2}}{176}$

No. of rotations = $45454.54$ =45455

Question 11

(Diagram to be added)

Given 

Square with side = 21cm

Circle with maximum area diameter 

d= 21cm

Shaded area = Square area - Circle area 

$=(21)^{2}-\pi\left(\frac{21}{2}\right)^{2}$

$=441-\frac{22}{7} \times \frac{441}{4}$

$=441\left(1-\frac{22}{28}\right)$

$=441\left(\frac{6}{28}\right)$

Shaded area = $94.5 \mathrm{~cm}^{2}$

Question 12

Side of equilateral triangle = 4.4cm

Perimeter of triangle = $3 \times 4.4$

=$13.2 \mathrm{~cm}$

∴ Perimeter of circle = Perimeter of equilateral triangle 

$\begin{aligned} 2 \pi r &=13.2 \\ r &=\frac{13.2}{2 \times 22} \times 7 \\ r &=2.1 \mathrm{~cm} \end{aligned}$

Radius of circle= 2.1cm


Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times(2.1)^{2}$

Area of circle = 13.86 $\mathrm{~cm}^{2}$

Question 13

Wire is bent in the form of square of side = 27.5cm

Perimeter of square = Length of wire

Length of wire = $4 \times 275$

Length of wire = 110cm

Now same wire bent in the shape of circle 

Length of wire = Perimeter of circle

$110=2 \pi r$

$r=\frac{110}{2 \times 22} \times 7$

$r=\frac{35}{2}$

$r=17.5 \mathrm{~cm}$

Radius of circle = 17.5cm

Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times(17.5)^{2}$

Area of circle = $962.5 \mathrm{~cm}^{2}$

Question 14

Wire is initially in the form of rectangle of length , breadth = 187cm, 14.3cm

Length of wire = Perimeter of rectangle 

$\begin{aligned} & 2(18.7+14.3) \\=& 2(33) \\=& 66 \mathrm{~cm} \end{aligned}$

Now same wire is bent into circle 

Length of wire = Perimeter of circel

$66=2 \pi r$

$r=\frac{66}{2 \times 22} \times 7$

$r=\frac{21}{2}$

$r=10.5 \mathrm{~cm}$

Radius of circle = 10.5cm

Area of circle = $\pi r^{2}$

$=\frac{22}{7} \times(10.5)^{2}$

Area of circle = 346.5$\mathrm{Cm}^{2}$

Question 15

(diagram to be added)

Diameter of circular park = 84m

Radius of circular park = 42m

Radius outer circle = 42+3.5

=45.5m

∴ Area of road = Outer circle area - Inner circle area 

$=\pi(45.5)^{2}-\pi(42)^{2}$

Area of road $=962.5 \mathrm{~m}^{2}$

Cost of constructing the road = Rs $240 / m^{2}$

Cost of Constructing the road = $962.5 \times 240$

= Rs 231000

Question 16

(diagram to be added)

Outer circle Circumference = 44m

$2 \pi R=44$

$R=\frac{44}{2 \times 22} \times 7$

$R=7 \mathrm{~m}$

Outer circle radius =7m

Inner circle radius=  7-3=5m

Circumference of inner circle = $2 \pi r=2 \times \frac{22}{7} \times 5=31.42 \mathrm{~m}$

Area of inner circle = $\pi r^{2}=\pi(5)^{2}$

=$78.57 m^{2}$

Question 17

(diagram to be added)

Area between the circles = $770 \mathrm{~cm}^{2}$

Radius of outer circle = 21cm

Area between the circles= Outer circle area - Inner circle area 

770= $\pi (21)^{2}$ - \pi r^{2}$

$770=\frac{22}{7}\left(441-r^{2}\right)$

$\frac{770 \times 7}{22}=441-r^{2}$

$245=441-r^{2}$

$r^{2}=441-245$

$r^{2}=196$

$r=\sqrt{196}$

$r=14 cm$

Inner circle radius = 14cm

Question 18

(diagram to be added)

Radius of big circle = 14cm

Shaded region area = $\pi r^{2}-$[Rectangle area + $2 \times$ Circle area]

=$\pi(14)^{2}-\left[3 \times 1+\pi(3.5)^{2}\right]$

=$616-[3+38.5]$

=$616-41.5$

 ∴ Shaded region area  =$574.5 \mathrm{~cm}^{2}$ ∴ Shaded region area  

Question 19

(diagram to be added)

(i) Length of boundary = Semi- circle length +10+7+10

$=\frac{2 \pi r}{2}+10+7+10$

$=\pi r+10+7+10$

$=\frac{22}{7} \times \frac{7}{2}+10+7+10$

$=11+10+7+10$

$=38 \mathrm{~cm}$

∴ Length of boundary = 38cm

Area of shaded Region = Rectangle Area - Semi circle Area 

$=10 \times 7-\frac{\pi r^{2}}{2}$

=$10 \times 7-\frac{22}{7} \times \frac{7^{2} }{4 \times 2}$

$=70-19.25$

Area of Shaded Region = $50.75 \mathrm{~cm}^{2}$


(ii) (diagram to be added)

From the Figure 

Side of square = $2 \times$ radius of Circle 

 $\begin{aligned} r+2 r+r &=28 \\ 4 r &=28 \\ r &=\frac{28}{4} \\ r &=7 \mathrm{cm} \end{aligned}$

Radius of semi- circle = 7cm

Side of square = $2 \times 7=14 \mathrm{cm}$

Length of boundary = $4 \times$ perimeter of  semi circle

$\begin{aligned} & 4 \times \frac{2 \pi r}{2} \\=& 4 \times \frac{2 \times 22 \times 7}{1 \times 2} \end{aligned}$

Length of boundary= 88cm

Area of shaded region = $4 \times$ semi circle area + Square Area

$=4 \times \frac{\pi \times 7^{2}}{2}+14^{2}$

$=\frac{4 \times 22 \times 7^{2}}{7 \times{2}}+14^{2}$

$=308+196$

Area of shaded region = $504 \mathrm{~cm}^{2}$

Question 20

(diameter to be added)

From figure 

Diameter of semicircle = 10.5-3.5

Diameter of semicircle = 7cm

Radius of semi- circle = 3.5cm

Length of boundary = $4+35+$ semicircle perimeter +$4+10.5$

$=7.5+\frac{2 \pi \times 3.5}{2}+14.5$

$=7.5-1 \frac{22}{7} \times 3.5+14.5$

$=7.5+11+14.5$

Length of boundary $=33 \mathrm{~cm}$

Area of shaded region = Rectangle Area+ Semi circle 

$=4 \times 10.5+\frac{\pi(3.5)^{2}}{2}$

$=42+\frac{22}{7} \times \frac{(3.5)^{2}}{2}$

$=42+19.25$

Area of shaded region = $61.25 \mathrm{Cm}^{2}$


(ii) (diameter to be added)

Consider $\triangle O A B$

$O A^{r}=O B^{2}+A B^{2}$

$10^{r}=r^{2}+8^{2}$

$r^{2}=100-64$

$r^{r}=36$

$r= \sqrt{36}$

$r=6 \mathrm{~cm} .$

Length of boundary = 10+ Semicircle length +10

=$10+\frac{2 \pi \times r}{2} +10$

=$10+2 \times \frac{22}{7} \times \frac{6}{2}+10$

=$10+18.857+10$

Length of boundary = 38.857cm

Area of shaded region = Area of $\triangle A O C+$ Area of semi - circle

$=\frac{1}{2} \times 2 \times r \times 8+\frac{\pi r^{2}}{2}$

$=\frac{1}{2} \times 2 \times 6 \times 8+ \frac{22}{7} \times \frac{6^{2}}{2}$

$=48+56.57$

Area of shaded Region = 104.57$\mathrm{cm}^{2}$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *