ML AGGARWAL CLASS 7 Chapter 16 Perimeter and Area Exercise 16.2

 

  Exercise 16.2

Question 1

(i) Area of parallelogram =$b\times h$

Base (b)= 8cm

Height (h)= 4.5cm

Area of parallelogram =  $8 \times 4.5$

= $36 \mathrm{~cm}^{2}$


(ii)Base $(b)=2 \mathrm{~cm}$

Height $(h)=4.4 \mathrm{~cm}$

Area of parallelogram =$b\times h$

$=2 \times 4.4$

Area of parallelogram $=8.8 \mathrm{~cm}^{2}$

(iii) $\begin{aligned} \text { Base }(b) &=2.5 \mathrm{~cm} \\ \text { Height }(h) &=3.5 \mathrm{~cm} \end{aligned}$

$\begin{aligned} \text { Area } &=b \times h \\ &=2.5 \times 35 \end{aligned}$

Area of parallelogram = $8.75 \mathrm{Cm}^{2}$

Question 2

(i)Area of triangle = $\frac{1}{2} \times$ base $\times$ height

Base (b) = 6.4cm

Height (h)=6cm

Area of triangle = $\frac{1}{2} \times 6.4 \times 6$

$=6.4 \times 3$

Area of triangle = 19.2 $\mathrm{cm}^{2}$
 
(ii)Base (b) = 5cm

Height (h)= 6cm

Area of triangle = $\frac{1}{2} b h$

=$\frac{1}{2} \times 5 \times 6$

=$5 \times 3$

Area of triangle = $15 \mathrm{~cm}^{2}$

(iii)Base $(b)=4.5 \mathrm{~cm}$

Height $(h)=6 \mathrm{~m}$

$\begin{aligned} \text { Areaof triangle } &=\frac{1}{2} b h \\ &=\frac{1}{2} \times 4.5 \times 6 \\ &=4.5 \times 3 \end{aligned}$

Area of triangle = $13.5 \mathrm{~cm}^{2}$

Question 3

(i) $41 \mathrm{cm}^{2}$

(ii) 12.3cm

(iii)10.3cm

(iv)5.8cm

Question 4

(i)193.72 $\mathrm{cm}^{2}$

(ii) 11.6cm

(iii) 15.5cm

(iv)80cm

Question 5

(Diagram to be added)

Area of parallelogram = $base\times height$
 
Base =6cm, height =3cm

Area of parallelogram = $6 \times 3=18 \mathrm{~cm}^{2}$---①

Consider 

Base = 4cm , height = h

Area of parallelogram = $4 \times h$ ----②

①=②

$4 \times h=18$

$h=\frac{18}{4}$

$n=4.5 \mathrm{~cm}$

Question 6

Consider 

Base (b) = 9cm , Height (h)= 6cm

Area of triangle = $\frac{1}{2} b h$

$=\frac{1}{2} \times 9 \times 6$

$=4 \times 3$

Area of triangle = 27$Cm^{2}$----①

Consider 

Base (b)= 7.5m, height (h)=?

Area of triangle = $=\frac{1}{2} \times 7.5 \times h$

①=②

$\begin{aligned} \frac{1}{2} \times 7.5 \times h &=27 \\ \frac{h}{2} &=\frac{27}{7.5} \end{aligned}$

h= 7 .2m

Height corresponding to the base 7.5m = 7.2m

Question 7

(Diagram to be added)

Base = 8cm

Hypotenuse = 17cm

Height = h

$A C^{2}=A B^{2}+B C^{2}$ (Pythagoras Theorem)

$\begin{aligned} 17^{2}=& h^{2}+8^{2} \\ h^{2}=& 289-64 \end{aligned}$

$h^{2}=225$

$h=\sqrt{225}$

$h=15 \mathrm{~cm}$

Height of right angled triangle = 15cm

Area of triangle $=\frac{1}{2} b h$

$=\frac{1}{2} \times 8 \times 15$

$=4 \times 15$

Area of triangle = $60 \mathrm{~cm}^{2}$

Question 8

(Diagram to be added)

Given 

(i) $\triangle A B C$ is Right angled triangle

$\begin{aligned} A C^{2} &=-A B^{2}+B C^{2} \\ A C^{2} &=6^{2}+8^{2} \\ A C &=\sqrt{36+64} \\ &=\sqrt{100} \\ A C &=10 \mathrm{Cm} \end{aligned}$

(ii) Area of triangle = $\frac{1}{2} b h$

$=\frac{1}{2} \times 8 \times 6$

$=8 \times 3$

Area of triangle = $24 \mathrm{Cm}^{2}$ ----①

Area of triangle = $\frac{1}{2} \times A C \times B N$

=$\frac{1}{2} \times 10 \times B N$----②

①=②

$\begin{aligned} \frac{1}{2} \times 10 \times B N &=24 \\ B N &=\frac{48}{10} \\ B N &=4.8\mathrm{cm}\end{aligned}$

Question 9

(Diagram to be added)

Given AB = 10cm

EF= 16cm

M is mid point of DC 

$D M=M C=\frac{10}{2}=5 \mathrm{Cm}$

Area of $\triangle A E B$ = Area  of parallelogram ABCD 

$\frac{1}{2} \times A B \times E F=A B \times G F$

$G F=8 \mathrm{~cm}$

∴ EF= GF + EG

$16=8+E G$

$E G=8 \mathrm{cm}$

Given Area of Triangle AEB= Area of Parallelogram ABCD 

∴ Area of trapezium AMCB is common in both Triangle AED and Parallelogram ABCD 

∴ Area of $\triangle A D M=$ Area of $\triangle M E C$

$=\frac{1}{2} \times M C \times E G$

$=\frac{1}{2} \times 5 \times 8$

$=5 \times 4$

∴Area of △ADM $=20 \mathrm{c} \mathrm{m}^{2}$


Question 10

(Diagram to be added)

ABCD is a rectangle of size = $18 \operatorname{cm} \times 10 \mathrm{~cm}$

$\angle E=90^{\circ}$

In  $\triangle E C B$

$B C^{2}=E C^{2}+E B^{2}$

$10^{2}=8^{2}+E B^{2}$

$E B^{2}=100-64$

$E B^{2}=36$

$E B=\sqrt{36}$

$E B=6 \mathrm{Cm}$

Area of shaded region= Area of $\square A B C D$ - Area of $\triangle E C B$

=$l \times b-\left(\frac{1}{2} b h\right)$

=$18 \times 10-\left(\frac{1}{2} \times 6 \times 8\right)$

=$180-24$

Area of shaded region = $156 \mathrm{cm}^{2}$

Question 11

(i) (Diagram to be added)

Area of shaded region = Area of $\square A B C D$ - ( Area of $\Delta^{l \varphi} E C B$+ Area of DEF )

$18 \times 10-\left(\frac{1}{2} \times 10 \times 8+\frac{1}{2} \times 6 \times 10\right)$

$(\because D C=D E+E C)$ $18=10+E C$ =$E C=8 \mathrm{~cm}$)

$=180-(40+30)$

$=180-70$

Area of shaded region = $110 \mathrm{Cm}^{2}$


(ii)(Diagram to be added)

Area of shaded region = Area of $\square A B C D-$ [Area of $\Delta A E \mathrm{~F}+$ Area of $\triangle E C B$ Area of $\triangle$ DCF ]

=$A B \times B C-\left[\frac{1}{2} \times A E \times A F+\frac{1}{2} \times E B \times B C+\frac{1}{2} \times D F \times D C\right]$

=$20 \times 20-\left[\frac{1}{2} \times 10 \times 10+\frac{1}{2} \times 10 \times 20+\frac{1}{2} \times 10 \times 20\right]$

$=400-[10 \times 5+10 \times 10+10 \times 10]$

$=400-[50+100+100]$

=400-[250]

Area of shaded region = $150 \mathrm{~cm}^{2}$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *