ML AGGARWAL CLASS 7 Chapter 16 Perimeter and Area Exercise 16.1

 

  Exercise 16.1


Question 1

Given 

(Diagram to be added)

ABCD is a square of side 24cm 

AE = 15cm

(i) Perimeter of AEFD $=2(A E+A D)$

$=2(15+24)$

$=2(39)$

 Perimeter of AEFD $=78 \mathrm{Cm}$

Perimeter of EBCF = $=2(E B+B C)$

$\begin{aligned} A B &=A E+E B \\ 24 &=15+E B \\ E B &=24-15 \\ E B &=9 C m \end{aligned}$
 
Perimeter of EBCF = $2(9+24)$
 
$2(33)$

Perimeter of EBCF = 66cm

Difference in perimeter = 78- 77= 12cm

∴ Perimeter of AEFD exceed the perimeter of EBCF by 12 cm

(ii) Area of AEFD(rectangle) = l$\times$ b

 $=A E \times A D$

$=15 \times 24$

Area of AEFD $=360 \mathrm{c} \mathrm{m}^{2}$

Question 2

Dimensions of rectangular park ($l \times b $) = $180 \mathrm{~m} \times 120 \mathrm{~m}$

Perimeter of parks = $2(l+h)$

$=2(180+120)$

$=2(300)$

Perimeter of park = 600m

Distance covered by negma  five rounds around park  $=5 \times 660$

$=3000 \mathrm{~m}$

Speed of Negma = $7-5 \mathrm{~km} / \mathrm{hour}$

$\frac{7500}{3600} \mathrm{~m} / \mathrm{sec}$

Time $=\frac{\text { Distance  }}{\text { speed }}$

$\frac{3000}{7500} \times 3600$

Time = 1440 sec = 24 min

Question 3

Area of rectangular plot = 540$m^{2}$

Length of rectangular plot (L) = 27m

Area of rectangle = $l \times b$

$540=27 \times b$

Breadth = $\frac{540}{27}$

Breadth = 20m

Perimeter of rectangular plot = $2(l+b$

$=2(27+20)$

$=2(47)$

Perimeter of rectangular plot = 94m

Question 4

Perimeter of rectangular plot = 151m

Breadth (b) =  32m

Length (l) = ?

Perimeter = 2(l+b)

151= 2(L+ 32)

L+ 32= 75.5

L = 75.5- 32

l = 43.5m

Area of rectangular plot = $\ell \times b$

$=43.5 \times 32$

Area of rectangular plot = 1522.5$m^{2}$

Area of EBCF (Rectangle)= l $\times$ b

$=E B \times B C$

$=9 \times 24$

Area of EBCF = $216 \mathrm{~cm}^{2}$

Difference in Area = 360- 216

$=144 \mathrm{~cm}^{2}$

Area of AEFD exceeds the area of EBCF by $=144 \mathrm{~cm}^{2}$

Question 5

Area of rectangular plot = $340 \mathrm{~m}^{2}$

Breadth (b) = 17m

Area = l $\times$ b

340= $l\times17$

$l=\frac{340}{17}$

$l=20 \mathrm{~m}$

Perimeter of rectangular plot = $2(+h)$

$=2(20+17)$

$=2(37)$

Perimeter of rectangular plot = 74m

Cost of fencing = Rs 5.70 meter

Total cost of fence around the plot = $74 \times 57$

= Rs $421.80$

Question 6

Let breadth of park = b

Length of park = l = 90m

Side of square park(s) = 60m

Area of square park = Area of rectangular park

$\begin{aligned} s^{2} &=l \times b \\ 60^{2} &=90 \times b \\ 3600 &=90 \times b \\ b &=\frac{3600}{90} \\ b &=40 \mathrm{~m} \end{aligned}$

∴ Breadth of rectangular park = 40m

Question 7

When wire is in the shape of rectangular 

Length (l) = 40cm

Breadth (b) = 22cm

Perimeter (p)= $2(l+b)$

$=2(40+22)$

$=2(62)$

Perimeter (p)= 124cm

$\begin{aligned} \operatorname{Area}(A) &=\operatorname{l\times} b \\ &=40 \times 22 \end{aligned}$

Area (A) = 880$\mathrm{cm}^{2}$

When wire in the shape of square 

Perimeter of square= Perimeter of rectangle

4s = p

4s = 124

$S=\frac{124}{4}$

$S=31 \mathrm{~cm}$

∴ Side of square = 31cm

Area of square = $s^{2}$

$=31^{2}$

Area of square = 961

Area of square > Area of rectangle 

Square occupies more area than rectangle By (961-880) = $81 \mathrm{~cm}^{2}$

Question 8

Dimensions of wall ($l \times h$)=  $4.5 \mathrm{~m} \times 3.6 \mathrm{~m}$

Dimensions of door $(l \times h)$ = $1 m \times 2 m$ 

Area of wall $\left(A_{1}\right)$ =$l\times h$ 

$=4.5 \times 3.6$

Area of wall $\left(A_{1}\right)=16.2 \mathrm{~m}^{2}$

$\begin{aligned} \text { Areaot door }\left(A_{2}\right)=& b \times h \\=& 1 \times 2 \\ \text { Areaot door }\left(A_{2}\right)=& 2 m^{2} \end{aligned}$

Area for white washing = $A_{1}-A_{2}$

= 16.2-2

Area for white washing = $14.2 \mathrm{~m}^{2}$

Cost for white washing = Rs 20 $m^{2}$

∴Cost of white washing = $14.2 \times 20$

=Rs 284

Question 9

(Diagram to be added)

Inner rectangle dimension

$(l \times b)=45 \times 30 \mathrm{~m}^{2}$

Outer rectangle dimensions  

$\begin{aligned}(l \times b) &=45+2 \times 2.5 \times 30+2 \times 2.5 \\ &=45+5 \times 30+5 \\ &=50 \times 35 \mathrm{~m}^{\mathrm{2}} \end{aligned}$

Path area = Outer rectangle area - Inner rectangle area 

=$50 \times 35-(45 \times 30)$

=$1750-1350$

Path area =$400 \mathrm{~m}^{2}$

Question 10

(Diagram to be added)

Outer Carpet size $(l\times b)=5 \mathrm{~m} \times 2 \mathrm{~m}$

Inner part of carpet size $=(5-2 \times 0.25) \times(2-2 \times 0.25)$

$=(5-0.5) \times(2-0.5)$

$=\quad 4.5 \times 1.5 \mathrm{~m}^{2}$

Red portion area = Outer part area - Inner part area 

$5 \times 2-(4.5 \times 1.5)$

$10-6.75$

Red portion Area =$3.25 \mathrm{~m}^{2}$

Blue portion Area = $4.5 \times 1.5=6.75 \mathrm{~m}^{2}$

Ratio of Areas = $\frac{Red portion}{Blue portion area}$

$=\frac{3.25}{6.75}$

Ratio of Areas= $\frac{13}{27}$

Question 11

(Diagram to be added)

Width of verandah = 2.25m

Dimensions of Room =5.5mx4m

(i) Outside rectangle dimension 

l = 5.5+ $2 \times 2.25=10 \mathrm{~m}$

b = $4+2 \times 2.25=8.5 \mathrm{~m}$

Area of verandah = Outside area - Inside area 

= $10 \times 8.5-(5.5 \times 4)$

= 85-22

Area of Verandah = $63 m^{2}$

(ii) Cost of Cementing the floor of verandah = Rs $200 / \mathrm{ms}^{2}$

Total cost of cementing the floor of Verandah = $63 \times 200$

= Rs 12600

Question 12

(Diagram to be added)

Dimension of park = $70 \mathrm{~m} \times 45 \mathrm{~m}$

length path = l + b - w

=70+45-5

=70+40

$=110 \mathrm{~m}$

Area of path = Length of path x Width of path 

Area of path = $110 \times 5$

Area of path = $550 \mathrm{~m}^{2}$

Rate of Constructing the road =  Rs 105

Total Cost of Constructing the road = $550 \times 105$

=₹ 57750

Question 13

Rectangle room dimension = $10 m \times 7.5 \mathrm{~m}$

Width of carpet = 1.25m 

Area of room = $l \times b$

=$10 \times 1.5$

Area of Room = $75 \mathrm{~m}^{2}$

Length of carpet = $\frac{\text { Area of Room }}{\text { width of  carpet }}$

=$\frac{75}{1.25}$

Length of carpet = 60m

Cost of carpet = Rs 250\m

Total cost of covering the floor with carpet = $=250 \times 60$

=Rs 30000

Question 14

Dimension of rectangular room = $6.5 \mathrm{~m} \times 5 \mathrm{~m}$

Dimension of square tile = $25 \mathrm{~cm} \times 25 \mathrm{~cm}$

$0.25 \mathrm{~m} \times 0.25 \mathrm{~m}$

$\begin{aligned} \text { Area of Room } &=l \times b \\ &=6.5 \times 5 \end{aligned}$

Area of Room $=532.5 \mathrm{~m}^{2}$

Area of tile $=S^{2}$

$=(0.25)^{2}$

Area of tile $=0.0625 \mathrm{~m}^{\mathrm{2}}$

No of tiles Required to cover the floor = $\frac{\text { Area of Room }}{\text { Area of tile }}$

=$\frac{32.5}{0.0625}$

No . of tiles = 520

Cost of one tile = Rs 9.40

Total cost of tiles = $9.4 \times 520$

Total cost of tiles = Rs 4888

Question 15

Side of square shape room = 4.8m

Perimeter of square tiles = 1.2m

Side of square tile = 4S = 1.2 

$S=\frac{1.2}{4}$

Side of square tile = 0.3m

Area of square shape room = $(4.8)^{2}$

=2.3 .04$m^{2}$

No. of tiles required t cover the floor = $\frac{\text { Area of square shape room}}{\text { Area of tile }}$

$=\frac{23.04}{0.09}$

No. of tiles required = 256

Cost of one tile = Rs 27

Total Cost of tiles to cover the room = $27 \times 256$

=Rs 26912

Question 16

Width of rectangular plot land = 50m

Total cost of fencing = Rs 4680

Rate of cost of fencing = Rs 18\m

Total length of fencing = $\frac{\text { Total cost }}{\text { Rate of cost }}$

= $\frac{4686}{18}$

Total length of fencing = 260 m

Length of fencing = Perimeter of rectangle 

$260=2(1+b)$

$260=2(1+50)$

$1+50=\frac{260}{2}$

$l+50=130$

$l=130-50$

$\ell=80 \mathrm{~m}$

Length of plot = 80m


(ii) Area of plot = $l \times b$

=$80 \times 50$

Area of plot = $4000 m^{2}$

Rate of cost for = Rs 7.6\$m^{2}$

Total cost of = $4000 \times 7.6=₹ 30400$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *