Exercise 11.5
Question 1
(i) (diagram to be added)
$Q R^{2}=P O N^{2}+P R^{2}$ (Pythagoras property)
$O R^{2}=10^{2}+24^{2}$
$Q R^{2}=100+576$
$Q R^{2}=676$
$Q R=\sqrt{676}$
$\partial N R=26 \mathrm{Cm}$
Question 2
(diagram to be added)
$A B^{2}=A C^{2}+B C^{2}$
$25^{2}=1^{2}+B C^{2}$
$625=49+B C^{2}$
$B C^{2}=625-49$
$B C^{2}=576$
$B C=\sqrt{576}$
$B C=24 \mathrm{Cm} .$
Question 3
(i) $A C^{2}=A B^{2}+B C^{2}$ (∵Pythagoras Property )
$\begin{aligned} 29^{2}=& x^{2}+21^{2} \\ 841 &=x^{2}+441 \\ & x^{2}=841-441 \end{aligned}$
$x^{2}=400 \Rightarrow x=\sqrt{400}=20 \mathrm{~cm}$
(ii) (Diagram to be added)
In triangle ABD
$A B^{2}=A D^{2}+B D^{2}$ (∵Pythagoras theorem)
$37^{2}=12^{2}+B D^{2}$
$B D^{2}=1369-144$
$B D^{2}=1225$
$B D=35 \mathrm{Cm}$
In triangle ADC
$A C^{2}=A D^{2}+D C^{2}$
$37^{2}=12^{2}+D C^{2}$
$D C^{2}=1369-144$
$D C^{2}=1225$
$D C=35 \mathrm{Cm}$
$x=B D+D C$
$=35+35$
$x=70 \mathrm{~m}$
(iii) (Diagram to be added)
In Triangle ABC
$A C^{2}=A B^{2}+B C^{2}$
$13^{2}≠12^{2}+B C^{2}$
$169=144+B C^{2}$
$B C^{2}=169-144$
$B C^{2}=25$
$B C=5 \mathrm{Cm}$
In triangle DCE
$D C^{2}=D E^{2}+C E^{2}$
$10^{2}=6^{2}+C E^{2}$
$C E^{2}=100-36$
$C E^{2}=64$
$C E=\sqrt{64}$
$C E=8 \mathrm{~cm} .$
$\begin{aligned} x &=\overline{B C}+\overline {CE} \\ &=5+8 \\ x &=13 \mathrm{~cm} . \end{aligned}$
Question 4
(i) $4^{2}+5^{2} \Rightarrow 16+25=41 \neq 7^{2}$
ஃ 4,5,7 are not sides of right angle of triangle
(ii) Biggest side = 2,5cm = Hypotenuse
$1.5^{2}+2^{2} \Rightarrow 2.25+4=6.25$
$2.5^{2}=6.25$
$\therefore 1.5^{2}+2^{v}=2 \cdot 5^{2}$
Right angled triangle
Right angle is opposite to 2.5cm side
(iii) $7 \mathrm{~cm}, 5.6 \mathrm{~cm}, 4.2 \mathrm{~cm}$
Biggest side = 7cm =Hypotenuse
∴ $5.6^{2}+4.2^{2} \Rightarrow 31.36+17.64=49$
$7^{2}=49$
$\therefore 5.6^{2}+4.2^{2}=7^{2}$
∴ Given sides are sides of right angled triangle
Right angle at opposite to side 7cm side
Question 5
(diagram to be added)
Ladder length ground = 15m
Height from the ground = 12m
$A C^{2}=A B^{2}+B C^{2}$ (∵ Pythagoras Theorem )
$15^{2}=12^{2}+B C^{2}$
$B C^{2}=225-144$
$B C^{2}=81$
$B C=\sqrt{81}$
$B C=9 \mathrm{~m}$
Distance between ladder foot to wall is 9m
Question 6
(diagram to be added)
$B D^{2}=D C^{2}+B C^{2}$
$17^{2}=15^{2}+B C^{2}$
$B C^{2}=289-225$
$B C^{2}=64$
$B C=\sqrt{64}$
$B C=8 \mathrm{Cm}$
Perimeter = $\begin{aligned} 2(l+b) & \Rightarrow 2(D C+B()\\ & =2(15+8) \\ &=2(23) \end{aligned}$
Perimeter $=46 \mathrm{~cm}$
$\begin{aligned} \text { Area }=\operatorname{lx} b &=15 \times 8 \\ &=120 \mathrm{~cm}^{2} \end{aligned}$
Question 7
(diagram to be added)
$A C=10 \mathrm{~cm}$
$B D=24 \mathrm{Cm} .$
$\overline{B O}=\overline{O D}=12 \mathrm{~m} .$
$\overline{A O}=\overline{O C}=5 \mathrm{~cm}$
$B C^{2}=\overrightarrow{B O}^{2}+\overline{O C}^{2}$
$B C^{2}=12^{2}+5^{2}$
$=144+25$
$B C^{2}=169$
$B C=\sqrt{169}$
$B C=13 \mathrm{Cm} .$
Side of rohmbus = 13cm
Perimeter = 4\times side
$=4 \times$ 13=52cm
Question 8
(diagram to be added)
$A C=18 \mathrm{~cm}$
$\overline{A O}=\overline{O C}=4 \mathrm{~cm} .$
$\overline{A D}=5 \mathrm{~cm} .$
$\begin{aligned} \overline{A O}^{2}+\overline{O D}^{2} &=\overline{A D}^{2} \\ 4^{2}+\overline{O D}^{2} &=5^{2} \\ \overline{O D}^{2} &=25-16 \\ \overline{D D}^{r} &=9 \\ \overline{D D} &=\sqrt{9} \\ \overline{O D} &=3 \mathrm{~m} . \end{aligned}$
$\begin{aligned} B D &=2 \times \overline{O D} \\ &=2 \times 3 \\ \overline{B D} &=6 \mathrm{cm} \end{aligned}$
No comments:
Post a Comment