ML AGGARWAL CLASS 7 Chapter 11 Triangles and its Properties Exercise 11.2

 Exercise 11.2

Question 1

(i) Exterior angle =Sum of two interior opposite angles

$x=45+65$

$x=110^{\circ}$


(ii)Exterior angle = Sum two interior opposite angles

$x=55+40$

$x=95^{\circ}$


(iii) Exterior angle = Sum of two interior opposite angles

$x=50+50$

$x=100^{\circ}$

Question 2

(i)Exterior angle = Sum of two interior opposite angles

$115=x+50$

$x=115-50$

$x=65^{\circ}$


(ii) Exterior angle = Sum of two interior opposite angles

$80=x+30$

$x=80-30$

$x=50^{\circ}$


(iii)  Exterior angle = Sum of two interior opposite angles

$70=x+36^{\circ}$

$x=70-36$

$x=34^{\circ}$

Question 3

(i)  Exterior angle = Sum of two interior opposite angles

$105=x+2 x$

$3 x=105$

$x=\frac{105}{3}$

$x=35^{\circ}$


(ii)  Exterior angle = Sum of two interior opposite angles

$\begin{aligned} 125 &=2 x+3 x \\ 125 &=5 x \\ x &=\frac{125}{5} \\ x &=25^{\circ} \end{aligned}$


(iii) Sum of angles in triangle = $180^{\circ}$

$\begin{aligned} x+60+50 &=180^{\circ} \\ x+110 &=180 \\ x &=180-110 \\ x &=70^{\circ} \end{aligned}$

Question 4

(i) Sum of angles in triangle =  $180^{\circ}$

$\begin{aligned} 50+x+x &=180 \\ 2 x+50 &=180 \\ 2 x &=180-50 \\ 2 x &=130 \\ x &=\frac{130}{2} \end{aligned}$

x = $65^{\circ}$


(ii) Exterior angle = $110^{\circ}$, $120^{\circ}$

Corresponding interior angles = $180-110, \quad 180-120$

(diagram to be added)

= $70^{\circ},60^{\circ}$ (∵Forms linear pair)

∴ Angles of triangle x, $70^{\circ},60^{\circ}$

$\therefore \quad x+70+60=180$

$x+130=180$

$x=180-130 .$

$x=50^{\circ}$


(iii) Sum of angles in triangle = $180^{\circ}$

$\begin{aligned} x+2 x+90 &=180 \\ 3 x+90 &=180 \\ 3 x &=180-90 \\ 3 x &=90 \\ x &=\frac{90}{3} \\ x &=30^{\circ} \end{aligned}$

Question 5

(i) Sum of angles in triangle = $180^{\circ}$

$\begin{aligned} x+y+50 &=180 \\ x+y &=180-50 \\ x+y &=130 \rightarrow(①\end{aligned}$

Exterior angles= Sum of interior angles

$120=50+x$

$x=120-50$

$x=70^{\circ} \rightarrow$②

Substituted   x value in eq ①

$x+y=130$

$70+y=130$

$y=130-70$

$y=60^{\circ}$


(ii) x $=60^{\circ}$ (∵Vertically opposite angles)

Sum of angles in triangles $=180^{\circ}$

$40+x+y=180^{\circ}$

$40+60+y=180^{\circ}$

$y+100=180$

$y=180-100$

$y=80^{\circ}$


(iii) $y=90^{\circ}$ (∵Vertically opposite angles)

Sum of angles in triangles  $=180^{\circ}$

$\begin{aligned} y+x+x &=180^{\circ} \\ 90+2 x &=180^{\circ} \\ 2 x &=180-90 \\ 2 x &=90 \\ x &=\frac{90}{2} \\ x &=45^{\circ} \end{aligned}$

Question 6

(i) (diagram to be added)

Angles of triangle = x , x ,y (∵Vertically opposite angles are equal)

x= y (∵Vertically opposite angles are equal)

Sum of angles in triangle $=180^{\circ}$

$\begin{aligned} x+x+y &=180 \\ x+x+x &=180 \\ 3 x &=180 \\ x &=\frac{180}{3} \\ x &=60^{\circ} \end{aligned}$


(ii) From given figure 

$125+x=180^{\circ}$ (∵Forms linear pair)

$x=180-125$

$x=55^{\circ}$

Sum of angles in triangle  $=180^{\circ}$

$\begin{aligned} x+x+y &=180^{\circ} \\ 2 x+y &=180 \\ 2 \times 55+y &=180 \\ 110+y &=180 \\ y &=180-110 \\ y &=70^{\circ} \end{aligned}$


(iii) (diagram to be added)

In triangle ADC

$\begin{aligned} 50+x+70=& 180^{\circ} \\ x+120 &=180 \\ x &=180-120 \\ x &=60^{\circ} \end{aligned}$

In triangle ABC

$\begin{aligned}(50+y)+36+70 &=180 \\ y+156 &=180 \\ y &=180-156 \\ y &=24^{\circ} \end{aligned}$

Question 7

(diagram to be added)

Sum of angles in triangle $=180^{\circ}$

$\begin{aligned} x+80+52 &=180 \\ x+132 &=180 \\ x &=180-132 \\ x &=48^{\circ} \end{aligned}$

z + 143 = $180^{\circ}$ (∵Forms a linear pair)

$x=180-143$

$x=37^{\circ}$

Sum of angles in triangle = $180^{\circ}$ 

$x+y+z=180$

$48^{\circ}+37^{\circ}+z=180$

$85+z=180$

$z=180-85$

$z=95^{\circ}$

Question 8

Let the unknown angles are x,x

One angle = $80^{\circ}$

Sum of angles in triangle = $180^{\circ}$

$\begin{aligned} x+x+80=& 180 \\ 2 x+80 &=180 \\ 2 x &=180-80 \\ & 2 x=100 \\ & x= \frac{100}{2} \\ & x=50^{\circ} \end{aligned}$

Question 9

Given 

Angle in triangle = $60^{\circ}$

Other two angles ratio = 2: 3

Let two angles = 2x, 3x

Sum of angles = 180

$60+2 x+3 x=180$

$\begin{aligned} 60+5 x &=180 \\ 5 x &=180-60 \\ 5 x &=120 \\ x=& \frac{120}{5} \\ x &=24^{\circ} \end{aligned}$

$\begin{aligned} \therefore \text { Angles are } & 2 x=2 \times 24=48^{\circ} \\ 3 x &=3 \times 24=72^{\circ} \end{aligned}$

Question 10

Given 

Angles ratio = 1: 2: 3

Let angles be x, 2x , 3x

Sum of angles in triangle = $180^{\circ}$

$\begin{aligned} x+2 x+3 &=180^{\circ} \\ 6 x &=180 \\ x &=\frac{180}{6} \\ x &=30^{\circ} \end{aligned}$

Angle = x = $30^{\circ}$

$2 x=2 \times 36^{\circ}=66^{\circ}$

$3 x=3 \times 30^{\circ}=90^{\circ}$

∴ It is scalene triangle according to sides 

It is right angled triangle according to angles

Question 11

(i)$65^{\circ}, 74^{\circ}, 39^{\circ} ?$

Sum of angles = $65^{\circ}+74^{\circ}+39=178^{\circ} \neq 180^{\circ}$

No, these are not angles of triangle

(ii)$\frac{1}{3}$ right angle $=\frac{1}{3} \times 90=30^{\circ}$

Right angle = $90^{\circ}$

Another angle= $60^{\circ}$

Sum of angles = $30+90+60=180^{\circ}$

∴ These are angles of triangle

No comments:

Post a Comment

Contact Form

Name

Email *

Message *