ML AGGARWAL CLASS 7 Chapter 10 Lines and Angles Exercise 10.2

Exercise 10.2 


Question 1

(i) $\angle 2, \angle 6 \rightarrow$ Corresponding angles

(ii) $\angle 1, \angle 6 \rightarrow$

(iii) $\angle 3, \angle 5 \rightarrow$ Alternative interior angles

(iv) $\angle 2, \angle 7 \rightarrow$

(v) $\angle 3, \angle 6 \rightarrow$ Co-interior angles

(vi) $\angle 4,<8 \rightarrow$ Corresponding angles

Question 2

(i) If a transverse line cuts two parallel lines , Then corresponding angles are equal.

(ii) If two lines are cut by a transversal line such that a present of Alternative angles are equal , then the lines are parallel

(iii) If two lines are cut by a transversal line such that a pair of co-interior angles are supplementary then the lines are parallel.

Question 3

(i) $\quad x=100^{\circ} \quad(\therefore$ Corresponding angles $)$

(ii) $x+110^{\circ}=180$ (∵pair of co- interior angles are supplementary)

$x=180-110$

$x=70^{\circ}$

(iii) (diagram to be added)

From figure 

$x+110^{\circ}=180^{\circ}$ (∵Froms a linear pair)

x= 180 - 110

x = $70^{\circ}$

Question 4

(i) From the figure 

Given angles 2x+ 6, 3x + $54^{\circ}$ are Co- interior angles 

When pair of parallel lines Cut by transversal line , of co- interior angles are supplementary 

$\begin{aligned} 2 x+6+3 x+54 &=180^{\circ} \\ 5 x+60 &=180 \\ 5 x &=180-60 \\ 5 x &=120 \\ x &=\frac{120}{5} \\ & x=24^{\circ} \end{aligned}$


(ii)  (diagram to be added) 

From the figure

$2 x+15^{\circ}, \quad 3 x+30^{\circ}$ are co- interior angles 

∴ Co- interior angles are supplementary 

$\begin{array}{rl}2 x+15+3 x+30 & =180 \\ 5 x+45 & =180 \\ 5 x & =180-45 \\ 5 x & =135 \\ 6 & x=\frac{135}{5} \\ \ & x=27^{\circ}\end{array}$

Question 5

(i) From given figure 

x $=60^{\circ}$  (∵vertically opposite angles)

$x=y=60^{\circ}$  (∵Corresponding angles)


(ii) From given figure 

q= $135^{\circ}$ (∵Vertically opposite angles)

q + p = $180^{\circ}$ (∵a pair of co-interior angles are supplementary)

$\begin{aligned} 135+P &=180^{\circ} \\ P &=180-135 \\ P &=45^{\circ} \end{aligned}$


(iii) From given figure 

a $=70^{\circ}$ (∵ Alternative interior angles are equal)

$a+b=180^{\circ}$ (∵ Forms a linear pair)

$\begin{aligned} 70+b &=180 \\ b &=180-70 \\ b &=110^{\circ} \end{aligned}$


(iv) From given figure 

Z= $128^{\circ} (∵Corresponding angles are equal)

$x+128^{\circ}=180 (∵Forms a linear pair)

$x=180-128^{\circ}$

$x=52^{\circ}$

$x=y=52^{\circ}$ (∵ Corresponding angles are equal)

$\therefore \quad x=52^{\circ}, y=52^{\circ}, \quad z=128^{\circ}$


(v) From given figure

b = $75^{\circ}$ $(\therefore$ vertically opposite angles)

$a+75^{\circ}=180^{\circ}$ (∵Forms a linear pair)

$a=180-75$

$a=105^{\circ}$

C = $75^{\circ}$ (∵Corresponding angles are equal)

$\begin{aligned} d+C=180^{\circ} \\ d+75 &=180 \\ d &=180-75 \\ d &=105^{\circ} \end{aligned}$


(vi) From given figure 

p = $62^{\circ}$ (∵Vertically opposite angles )

q + p = $180^{\circ}$ (∵Forms a linear pair)

$\begin{aligned} q+62 &=180 \\ & q=180-62 \\ & q=118^{\circ} \end{aligned}$

$p=S=62^{\circ}$ (∵Corresponding angles are equal)

$q = r = 180^{\circ}$  (∵ Alternative interior angles )

Question 6

( diagram to be added)

Consider $E F \| C D, E C$ transversal line

ஃ $x+120=180^{\circ}$ (∵Pair of Co-interior angles are supplementary)

$x=180-120$

$1 x=60^{\circ}$

Consider $C D \| A B, A C$ Transversal line 

$y+140=180 \quad$ (\because$ pair of co- interior angles are Supplementary)

$\angle E C A=x+y=60+40=100^{\circ}$

Question 7

( diagram to be added)

$l \| m, A C$ is transversal line 

$\therefore Z=55^{\circ}$  (∵ Alternative interior angles )

$l \| m, A B is transversal line 

x = $45^{\circ}$ (∵ Alternative interior angles)

In triangle ABC 

$\begin{aligned} 45+55+y &=180 \\ y+100 &=180 \\ y &=180-100 \\ y &=80^{\circ} \end{aligned}$

Question 8

( diagram to be added)

$l \| m, A C$ transversal line 

z+$60^{\circ}=180^{\circ}$ (∵Pair of Co -interior angles are supplementary)

$z=180-60$

$z=120^{\circ}$

$x+y=60^{\circ}$-------① (∵Alternative interior angles are equal) 

l|lm, $A B$ transversal line

$y+z=145^{\circ}$  (∵Alternative interior angles are equal) 

$y+120=143^{\circ}$

$y= 23^{\circ}$

Substituted y value is equation  ① 

$x+23=60$

$x=60-23$

$x=37^{\circ}$


(ii) ( diagram to be added)

 $l \| m, BC$ is transversal line 

$a=55^{\circ}$ (∵Corresponding angles are equal)

In triangle ABC

$\begin{aligned} 72+a+b=& 180^{\circ} \\ 72-55+b=& 180^{\circ} \\ b+127=180^{\circ} \\ b=180-127 \\ b=53^{\circ} \end{aligned}$

$b+c+55=180^{\circ}$ (Forms a linear pair)

$\begin{aligned} 53+c+55 &=180^{\circ} \\ c+108 &=180 \\ C &=180-108 \\ C &=72^{\circ} \end{aligned}$


(iii) ( diagram to be added)

From the given figure 

$75+a=180^{\circ}$ (∵Forma linear pair)

$a=180-75$

$a=105^{\circ}$

 $l \| m$, q is transversal line 

b = $75^{\circ}$ (∵Alternative interior angles are equal) 

$P \| q$, $l$ is transversal line

d = b = $75^{\circ}$ (∵Corresponding angles are equal)

 $l \| m$ p is transversal line 

d = c = $75^{\circ}$  (∵Alternative interior angles are equal) 


Question 9

( diagram to be added)

(i) From the given figure 

106, 64 are co- interior angles 

Sum = $106+64=170^{\circ} \neq 180^{\circ}$

$\therefore \quad l,m are not parllel


(ii) ( diagram to be added)

From the given figure 

Pair of co- interior angles $75^{\circ,75^{\circ}$

Sum= $75+75=150 \Rightarrow 180^{\circ}$

∴ l, m are not parallel


(iii) ( diagram to be added)

Pair of co-interior angles are $57^{\circ},123^{\circ}$

Sum =$123^{\circ}-157^{\circ}=180$

∴ l, m are parallel to each other.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *