ML AGGARWAL CLASS 7 Chapter 1 INTEGERS EXERCISE 1.3

 Exercise 1.3

Question 1


(i) $7 \times(-35)=-245$

(ii) $(-13) \times(-15)=195$

(iii) $(-12) \times(-11) \times(-10)=(-12) \times(110)=-1320$

(iv) $(-13) \times 0 \times(-24)=0 .$

(v) $(-1) \times(-2) \cdot(-3) \times(+4)=-24$

(vi) $(-3) \times(-6) \times(-2) \times(-1)=18 \times 2=36$



Question 2


(i) $37 \times[6+(-3)]$

If a,b,c are integers , then $a \times(b+c)$ = $a \times b+a \times c$

$=37 \times 6+37 \times(-3)$

∴ Both are equal , Verified 


(ii) $(-21) \times[(-6)+(-4)]=(-21) \times(-6)+(-21) \times(-4)$

If a ,b , c are integers, then $a \times(b+c)=a \times b+a \times c$

=$(-21) \times(-6)+(-21) \times(-4)$

∴ Verified 


Question 3


(i)
 $\begin{aligned} 8 \times 53 \times(-125)=& 8 \times(-125) \times 53 \\=&-1000 \times 53 \\=&-53,000 \end{aligned}$


(ii) 
$\begin{aligned}(-8) \times(-2) \times 3 \times(-5)=&(-8) \times(-5) \times(-2) \times 3 \\ &=40 \times 6 \\ &=240 . \end{aligned}$


(iii)
$\begin{aligned}(-6) \times 2 \times(-8) \times 5=&(-6) \times(-8) \times 2 \times 5 \\ &=48 \times 10 \\ &=480 . \end{aligned}$


(iv)
$\begin{aligned} 15 \times(-25) \times(-4) \times(-10) &=15 \times(-10) \times(-25) \times(-4) \\ &=-150 \times 100 \\ &=-15,000 \end{aligned}$


(v) $26 \times(-48)+(-48) \times(-36)$

$=(-48)[26+(-36)]$

$=(-48)[26-36]$

$=(-48) \times(-10)$

$=480 .$


(vi) $724 \times(-56)+(-724) \times 44$

$=724 \times(-56)+724 \times(-44)$

$=724 \times[-56+(-44)]$

$=724 \times[-56-44]$

$=724 \times(-100)$

$=-72400$


(vii) 
$\begin{aligned}(-47) \times 102=&(-43) \times(100+2) \\=&-47 \times 100+(-47) \times 2 \\=&-4700+(-94) \\=&-4700-94 \\ &=-4794 . \end{aligned}$


(viii) $(-39) \times(-97)$

$(-39) \times(-100+3)$

$(-39) \times(-100)+(-39) \times 3$

$=3900+(-117)$

$=3900-117$

$=3783$



Question 4


(i) 
$\begin{aligned}(-4) \times 1 &=44 \\ x &=\frac{44}{-4}=\frac{44 x-1}{-4 x-1} \\ & x=\frac{-44}{4}=-11 \end{aligned}$


(ii) 
$\begin{aligned} 7 \times 1 . &=-42 \\ x &=\frac{-42}{7} \\ x &=-6 . \end{aligned}$


(iii) 
$\begin{aligned} x \times(-13) &=143 \\ x=& \frac{143}{-13} \times \frac{-1}{-1} \\ x &=\frac{-143}{13} \\ & x=-11 \end{aligned}$


(iv) (-5) $\times$__ =0

Any number Multiplied with '0' We get '0

So 0 is answer 

i.e -5$times$ 0= 0 



Question 5


Fro every one hour the temperature lowered at a rate of $5^{\circ} \mathrm{C}$

For 8 hours it will be lowered by $5 \times 8=40^{\circ} \mathrm{C}$

Room temperature after free process= 32 - 40 

$=-8^{\circ} \mathrm{C}$


Question 6


Total number of question = 10 

Marks given for correct answer = 5 and 

Marks given for incorrect answer = -2

(i) Rohit gets 4 correct and 5 incorrect answer 

Rohit score = 4 $\times$ 5+6 $\times(-2)=20-12=8$


(ii) Seema gets 5 correct and 5 incorrect answer 

Seema's score = $5 \times 5+5 \times(-2)=25-10=15$


(iii) As ritu attempted 7 questions and only 2 question are 
correct , so number of incorrect question are 7-2=5

Ritu's score = $2 \times 5+5 \times(-2)=10-10=0$



Question 7


(i) Let pair of integers be x, y 

Product is - 15 i.e  $x y=-15$

$y=\frac{-15}{x}$ ___(1)

Difference = 8

x-y = 8

From (1) $x-\left(\frac{-15}{x}\right)=8$

$\frac{x^{2}+15}{x}=8$

$x^{2}+15=8 x$

$x^{2}-8 x+15=0$

$x^{2}-5 x-3 x+15=0$

$x(x-5)-3(x-5)=0$

$(x-3)(x-5)=0$

$x=3, x=9$

$y=\frac{-15}{3} ; \quad y=-\frac{15}{5}$
 
$y=-5 ; \quad y=-3$

The pair of integers are -3, -5 , 5, -3

Alternative method for (ii)

Product is - 36

Difference is 15

We know 

$12 \times(-3)=-36 ;(-12) \times 3=-36$

$9 \times(-4)=-36 \quad ;(-9) \times 4=-36$

Thus , we have pair of integers $12,-3 ;-12,3 ; 9,-4 ;-9,4$

Such that product of each pair is -36

But Difference of $9,-4=9-(-4)=9+4=13 \mathrm{~cm}$

Difference of $-9,4=-9-4=-13$

Hence the required pair are $12,-3$ or $-12,3$.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *