Exercise 3.1
Q1 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 1
(i) (2x+7y)2
It is in the form of (a+b)2=a2+2ab+b2
∴a=2x, b=7y
∴(2x+7y)2=(2x)2+2.2x.7y+(7y)2
=4x2+28xy+49y2
(ii) $\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)^2$
Sol :
$\left(\dfrac{1}{2}x \right)^2+2\times \dfrac{1}{2} \times x \times \dfrac{2}{3}\times y+\left(\dfrac{2}{3} y\right)^2$
$\dfrac{x^2}{4}+\dfrac{2xy}{3}+\dfrac{4}{9}y^2$
Q2 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 2
(i) $\left(3x+\dfrac{1}{2x}\right)^2$
It is in the form of $(a+b)^2=a^2+2ab+b^2$
∴$(3x)^2+2.3x.\dfrac{1}{2x}+\left(\dfrac{1}{2x}\right)^2$
$9x^3+3+\dfrac{1}{4x^2}$
(ii) $(3x^2y+5z)^2$
It is in the form of $(a+b)^2=a^2+2ab+b^2$
Here $a=3x^2y$ , b=5x
$(3x^2y)^2+2.3x^2y.5z+(5z)^2$
$9x^4y^2+30x^2yz+25z^2$
Q3 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 3
(i) $\left(3x-\dfrac{1}{2x}\right)^2$
It is in the form of $(a-b)^2=a^2-2ab+b^2$
Here, a=3x ; $b=\dfrac{1}{2x}$
$(3x)^2-2.3x.\dfrac{1}{2x}+\left(\dfrac{1}{2x}\right)^2$
$3^2-x^2-3+\dfrac{1}{2^2x^2}$
$9x^2-3+\dfrac{1}{4x^2}$
(ii) $\left(\dfrac{1}{2}x-\dfrac{3}{2}y\right)^2$
It is in the form of $(a-b)^2=a^2-2ab+b^2$
Here, $a=\dfrac{1}{2}x$ ; $b=\dfrac{3}{2}y$
∴$\left(\dfrac{1}{2}x\right)^2-2\times \dfrac{1x}{2}\times \dfrac{3}{2}y+\left(\dfrac{3}{2}y\right)^2$
$\dfrac{x^2}{4}-\dfrac{3xy}{2}+\dfrac{9y^2}{4}$
Q4 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 4
(i) (x+3)(x+5)
⇒x(x+5)+3(x+5)
⇒$x^2+5x+3x+15$
⇒$x^2+8x+15$
(ii) (x+3)(x-5)
⇒x(x-5)+3(x-5)
⇒x.x-x.5+3.x-3.5
⇒x2-5x+3x-15
⇒x2-2x-15
(iii) (x-7)(x+9)
⇒x(x+9)-7(x+9)
⇒x.x+9.x-7.x-7.9
⇒x2+9x-7x-63
⇒x2+2x-63
(iv) (x-2y)(x-3y)
⇒x(x-3y)-2y(x-3y)
⇒x.x-x.3y-2y.x+2y.3y
⇒x2-3xy-2xy+6y2
⇒x2-5xy+6y2
Q5 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 5
(i) (x-2y-z)2
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, a=x, b=-2y, c=-z
⇒x2+(-2y)2+(-z)2+2(x(-2y)+(-2y)(-z)+(-z)x)
⇒x2+4y2+z2+2(-2xy+2yz-zx)
⇒x2+4y2+z2+4yz-4xy-2zx
(ii) (2x-3y+4z)2
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here a=2x, b=-3y, c=4z
⇒(2x)2+(-3y)+(4z)+2(2x.(-3y)+(-3y)(4z)+(4z)(2x))
⇒4x2+4y2+16z2+2(-6xy-12yz+8xz)
⇒4x2+4y2+16z2-12xy-24yz+16xz
Q6 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 6
(i) $\left(2x+\dfrac{3}{x}-1\right)^2$
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, a=2x , $b=\dfrac{3}{x}$ , c=-1
⇒$(2x)^2+\left(\dfrac{3}{x}\right)^2+(-1)^2+2\left(2x.\dfrac{3}{x}+\dfrac{3}{x}(-1)+(-1)2x\right)$
⇒$4x^2+\dfrac{9}{x^2}+1+2\left(6-\dfrac{3}{x}-2x\right)$
⇒$4x^2+\dfrac{9}{x^2}+1+12-\dfrac{6}{x}-4x$
⇒$4x^2+\dfrac{9}{x^2}-\dfrac{6}{x}-4x+13$
(ii) $\left(\dfrac{2}{3}x-\dfrac{3}{2x}-1\right)^2$
Sol :
It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Here, $a=\dfrac{2}{3}x,b=\dfrac{-3}{2x}$, c=-1
⇒$\left(\dfrac{2}{3}x\right)^2+\left(\dfrac{-3}{2x}\right)^2+(-1)^2+2\left[\dfrac{2}{3}x\left(\dfrac{-3}{2x}\right)+\left(\dfrac{-3}{2x}\right)(-1)+(-1)\left(\dfrac{2}{3}x\right)\right]$
⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+1+2\left[-1+\dfrac{3}{2x}-\dfrac{2}{3}x\right]$
⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+1+2+\dfrac{6}{2x}-\dfrac{4x}{3}$
⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+\dfrac{3}{x}-\dfrac{4x}{3}-1$
Q7 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 7
(i) (x+2)3
Sol :
Here , a=x, b=2
It is in the form of (a+b)3=a3+3a2b+3ab2+b3
⇒x3+3(x2)(2)+3(x)(22)+23
⇒x3+6(x2)+3(x)(4)+8
⇒x3+6x2+12x+8
(ii) (2a+b)3
Sol :
It is in the form of (a+b)3=a3+3a2b+3ab2+b3
⇒(2a)3+3.(2a)2.b+3.2a.b2+b3
⇒8a3+3.4a2.b+6ab2+b3
⇒8a3+12a2b+6ab2+b3
Q8 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 8
(i) $\left(3x+\dfrac{1}{x}\right)^3$
Sol :
It is in the form of (a+b)3=a3+3a2b+3ab2+b3
a=3x ; $b=\dfrac{1}{x}$
∴$(3x)^3+3.(3x)^2.\dfrac{1}{x}+3.(3x).\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x}\right)^3$
⇒$27x^3+3.(9x^2).\dfrac{1}{x}+9.(x).\dfrac{1}{x^2}+\dfrac{1}{x^3}$
⇒$27x^3+27x+\dfrac{9}{x}+\dfrac{1}{x^3}$
(ii) (2x-1)3
Sol :
It is in the form of (a-b)3=a3-3a2b+3ab2-b3
Here, a=2x, b=1
∴(2x)3-3(2x)2.1+3(2x)(1)2-(1)3
⇒8x3-3.(4x2)+6x-1
⇒8x3-12x2+6x-1
Q9 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 9
(i) (5x-3y)3
Sol :
It is in the form of (a-b)3=a3-3a2b+3ab2-b3
a=5x ; b=3y
∴ (5x)3-3.(5x)2.3y+3.5x.(3y)2-(3y)3
⇒125x3-3.(25x2).(3y)+3.(5x).(9y2)-27y3
⇒125x3-225x2y+135xy2-27y3
(ii) $\left(2x-\dfrac{1}{3y}\right)^3$
Sol :
It is in the form of (a-b)3=a3-3a2b+3ab2-b3
⇒$(2x)^3-3.(2x)^2.\dfrac{1}{3y}+3.2x.\left(\dfrac{1}{3y}\right)^2-\left(\dfrac{1}{3y}\right)^3$
⇒$8x^3-3.(4x^2).\dfrac{1}{3y}+3.(2x).\dfrac{1}{9y^2}-\dfrac{1}{27y^3}$
⇒$8x^3-\dfrac{4x^2}{y}+\dfrac{2x}{3y^2}-\dfrac{1}{27y^3}$
Q10 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 10
(i) (a+b)2+(a-b)2
⇒a2+2ab+b2+a2-2ab+b2
⇒2a2+2b2
⇒2(a2+b2)
(ii) (a+b)2-(a-b)2
⇒(a2+2ab+b2)-(a2-2ab+b2)
⇒a2+2ab+b2-a2+2ab-b2
⇒2ab+2ab
⇒4ab
Q11 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 11
(i) $\left(a+\dfrac{1}{a}\right)^2+\left(a-\dfrac{1}{a}\right)^2$
⇒$\left(a^2+2.a.\dfrac{1}{a}+\right)+\left(a^2+2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)$
⇒$a^2+2+\dfrac{1}{a^2}+a^2-2+\dfrac{1}{a^2}$
⇒$2a^2+\dfrac{2}{a^2}$
⇒$2\left(a^2+\dfrac{1}{a^2}\right)$
(ii) $\left(a+\dfrac{1}{a}\right)^2-\left(a-\dfrac{1}{a}\right)^2$
⇒$\left(a^2+2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)-\left(a^2-2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)$
⇒$a^2+2+\dfrac{1}{a^2}-a^2+2-\dfrac{1}{a^2}$
⇒2+2
⇒4
Q12 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 12
(i) (3x-1)2-(3x-2)(3x+1)
⇒(3x)2-2.3x.1+12-3x(3x+1)+2(3x+1)
⇒9x2-6x+1-9x2-3x+6x+2
⇒-3x+3
(ii) (4x+3y)2-(4x-3y)2-48
⇒(4x)2+2.3y.4x+(3y)2-((4x)2-2.4x.3y+(3y)2)-48
⇒16x2+24xy+9y2-16x2+24xy-9y2-48
⇒48xy-48
⇒48(xy-1)
Q13 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 13
(i) (7p+9q)(7p-9q)
⇒7p(7p-9q)+9q(7p-9q)
⇒49p2-63pq+63pq-81q2
⇒49p2-81q2
(ii) $\left(2x-\dfrac{3}{x}\right)\left(2x+\dfrac{3}{x}\right)$
⇒$(2x)^2-\left(\dfrac{3}{x}\right)^2$
⇒$(2x)^2-\left(\dfrac{3}{x}\right)^2$
⇒Since it is in the form of (a+b)(a-b)=a2-b2
∴ $4x^2-\dfrac{9}{x^2}$
Q14 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 14
(i) (2x-y+3)(2x-y-3)
⇒((2x-y)+3)((2x-y)-3)
It is in the form of (a+b)(-a-b)=a2-b2
Q15 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 15
Q16 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 16
Q17 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 17
Q18 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 18
⇒27p3-64q3
Q19 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 19
Q20 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 20
Q21 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 21
Q22 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 22
Q23 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 23
Q24 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 24
Q25 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 25
Q26 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 26
Q27 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 27
Q28 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper
Question 28
⇒$\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}=3$
No comments:
Post a Comment