ML Aggarwal Solution Class 9 Chapter 3 Expansions Exercise 3.1

 Exercise 3.1


Q1 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 1

(i) (2x+7y)2

It is in the form of (a+b)2=a2+2ab+b2

∴a=2x, b=7y

∴(2x+7y)2=(2x)2+2.2x.7y+(7y)2

=4x2+28xy+49y2


(ii) $\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)^2$

Sol :

$\left(\dfrac{1}{2}x \right)^2+2\times \dfrac{1}{2} \times x \times \dfrac{2}{3}\times y+\left(\dfrac{2}{3} y\right)^2$

$\dfrac{x^2}{4}+\dfrac{2xy}{3}+\dfrac{4}{9}y^2$



Q2 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 2

(i) $\left(3x+\dfrac{1}{2x}\right)^2$

It is in the form of $(a+b)^2=a^2+2ab+b^2$

∴$(3x)^2+2.3x.\dfrac{1}{2x}+\left(\dfrac{1}{2x}\right)^2$

$9x^3+3+\dfrac{1}{4x^2}$


(ii) $(3x^2y+5z)^2$

It is in the form of $(a+b)^2=a^2+2ab+b^2$

Here $a=3x^2y$ , b=5x

$(3x^2y)^2+2.3x^2y.5z+(5z)^2$

$9x^4y^2+30x^2yz+25z^2$



Q3 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 3

(i) $\left(3x-\dfrac{1}{2x}\right)^2$

It is in the form of $(a-b)^2=a^2-2ab+b^2$

Here, a=3x ; $b=\dfrac{1}{2x}$

$(3x)^2-2.3x.\dfrac{1}{2x}+\left(\dfrac{1}{2x}\right)^2$

$3^2-x^2-3+\dfrac{1}{2^2x^2}$

$9x^2-3+\dfrac{1}{4x^2}$


(ii) $\left(\dfrac{1}{2}x-\dfrac{3}{2}y\right)^2$

It is in the form of $(a-b)^2=a^2-2ab+b^2$

Here, $a=\dfrac{1}{2}x$ ; $b=\dfrac{3}{2}y$

∴$\left(\dfrac{1}{2}x\right)^2-2\times \dfrac{1x}{2}\times \dfrac{3}{2}y+\left(\dfrac{3}{2}y\right)^2$

$\dfrac{x^2}{4}-\dfrac{3xy}{2}+\dfrac{9y^2}{4}$



Q4 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 4

(i) (x+3)(x+5)

⇒x(x+5)+3(x+5)

⇒$x^2+5x+3x+15$

⇒$x^2+8x+15$


(ii) (x+3)(x-5)

⇒x(x-5)+3(x-5)

⇒x.x-x.5+3.x-3.5

⇒x2-5x+3x-15

⇒x2-2x-15


(iii) (x-7)(x+9)

⇒x(x+9)-7(x+9)

⇒x.x+9.x-7.x-7.9

⇒x2+9x-7x-63

⇒x2+2x-63


(iv) (x-2y)(x-3y)

⇒x(x-3y)-2y(x-3y)

⇒x.x-x.3y-2y.x+2y.3y

⇒x2-3xy-2xy+6y2

⇒x2-5xy+6y2



Q5 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 5

(i) (x-2y-z)2

It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Here, a=x, b=-2y, c=-z

⇒x2+(-2y)2+(-z)2+2(x(-2y)+(-2y)(-z)+(-z)x)

⇒x2+4y2+z2+2(-2xy+2yz-zx)

⇒x2+4y2+z2+4yz-4xy-2zx


(ii) (2x-3y+4z)2

It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Here a=2x, b=-3y, c=4z

⇒(2x)2+(-3y)+(4z)+2(2x.(-3y)+(-3y)(4z)+(4z)(2x))

⇒4x2+4y2+16z2+2(-6xy-12yz+8xz)

⇒4x2+4y2+16z2-12xy-24yz+16xz



Q6 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 6

(i) $\left(2x+\dfrac{3}{x}-1\right)^2$

It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Here, a=2x , $b=\dfrac{3}{x}$ , c=-1

⇒$(2x)^2+\left(\dfrac{3}{x}\right)^2+(-1)^2+2\left(2x.\dfrac{3}{x}+\dfrac{3}{x}(-1)+(-1)2x\right)$

⇒$4x^2+\dfrac{9}{x^2}+1+2\left(6-\dfrac{3}{x}-2x\right)$

⇒$4x^2+\dfrac{9}{x^2}+1+12-\dfrac{6}{x}-4x$

⇒$4x^2+\dfrac{9}{x^2}-\dfrac{6}{x}-4x+13$


(ii) $\left(\dfrac{2}{3}x-\dfrac{3}{2x}-1\right)^2$

Sol :

It is in the form of (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Here, $a=\dfrac{2}{3}x,b=\dfrac{-3}{2x}$, c=-1

⇒$\left(\dfrac{2}{3}x\right)^2+\left(\dfrac{-3}{2x}\right)^2+(-1)^2+2\left[\dfrac{2}{3}x\left(\dfrac{-3}{2x}\right)+\left(\dfrac{-3}{2x}\right)(-1)+(-1)\left(\dfrac{2}{3}x\right)\right]$

⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+1+2\left[-1+\dfrac{3}{2x}-\dfrac{2}{3}x\right]$

⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+1+2+\dfrac{6}{2x}-\dfrac{4x}{3}$

⇒$\dfrac{4}{9}x^2+\dfrac{9}{4x^2}+\dfrac{3}{x}-\dfrac{4x}{3}-1$



Q7 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 7

(i) (x+2)3

Sol :

Here , a=x, b=2

It is in the form of (a+b)3=a3+3a2b+3ab2+b3

⇒x3+3(x2)(2)+3(x)(22)+23

⇒x3+6(x2)+3(x)(4)+8

⇒x3+6x2+12x+8


(ii) (2a+b)3

Sol :

It is in the form of (a+b)3=a3+3a2b+3ab2+b3

⇒(2a)3+3.(2a)2.b+3.2a.b2+b3

⇒8a3+3.4a2.b+6ab2+b3

⇒8a3+12a2b+6ab2+b3



Q8 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 8

(i) $\left(3x+\dfrac{1}{x}\right)^3$

Sol :

It is in the form of (a+b)3=a3+3a2b+3ab2+b3

a=3x ; $b=\dfrac{1}{x}$

∴$(3x)^3+3.(3x)^2.\dfrac{1}{x}+3.(3x).\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x}\right)^3$

⇒$27x^3+3.(9x^2).\dfrac{1}{x}+9.(x).\dfrac{1}{x^2}+\dfrac{1}{x^3}$

⇒$27x^3+27x+\dfrac{9}{x}+\dfrac{1}{x^3}$


(ii) (2x-1)3

Sol :

It is in the form of (a-b)3=a3-3a2b+3ab2-b3

Here, a=2x, b=1

∴(2x)3-3(2x)2.1+3(2x)(1)2-(1)3

⇒8x3-3.(4x2)+6x-1

⇒8x3-12x2+6x-1



Q9 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 9

(i) (5x-3y)3

Sol :

It is in the form of (a-b)3=a3-3a2b+3ab2-b3

a=5x ; b=3y

∴ (5x)3-3.(5x)2.3y+3.5x.(3y)2-(3y)3

⇒125x3-3.(25x2).(3y)+3.(5x).(9y2)-27y3

⇒125x3-225x2y+135xy2-27y3


(ii) $\left(2x-\dfrac{1}{3y}\right)^3$

Sol :

It is in the form of (a-b)3=a3-3a2b+3ab2-b3

⇒$(2x)^3-3.(2x)^2.\dfrac{1}{3y}+3.2x.\left(\dfrac{1}{3y}\right)^2-\left(\dfrac{1}{3y}\right)^3$

⇒$8x^3-3.(4x^2).\dfrac{1}{3y}+3.(2x).\dfrac{1}{9y^2}-\dfrac{1}{27y^3}$

⇒$8x^3-\dfrac{4x^2}{y}+\dfrac{2x}{3y^2}-\dfrac{1}{27y^3}$



Q10 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 10

(i) (a+b)2+(a-b)2

⇒a2+2ab+b2+a2-2ab+b2

⇒2a2+2b2

⇒2(a2+b2)


(ii) (a+b)2-(a-b)2

⇒(a2+2ab+b2)-(a2-2ab+b2)

⇒a2+2ab+b2-a2+2ab-b2

⇒2ab+2ab

⇒4ab



Q11 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 11

(i) $\left(a+\dfrac{1}{a}\right)^2+\left(a-\dfrac{1}{a}\right)^2$

⇒$\left(a^2+2.a.\dfrac{1}{a}+\right)+\left(a^2+2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)$

⇒$a^2+2+\dfrac{1}{a^2}+a^2-2+\dfrac{1}{a^2}$

⇒$2a^2+\dfrac{2}{a^2}$

⇒$2\left(a^2+\dfrac{1}{a^2}\right)$


(ii) $\left(a+\dfrac{1}{a}\right)^2-\left(a-\dfrac{1}{a}\right)^2$

⇒$\left(a^2+2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)-\left(a^2-2.a.\dfrac{1}{a}+\dfrac{1}{a^2}\right)$

⇒$a^2+2+\dfrac{1}{a^2}-a^2+2-\dfrac{1}{a^2}$

⇒2+2

⇒4



Q12 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 12

(i) (3x-1)2-(3x-2)(3x+1)

⇒(3x)2-2.3x.1+12-3x(3x+1)+2(3x+1)

⇒9x2-6x+1-9x2-3x+6x+2

⇒-3x+3


(ii) (4x+3y)2-(4x-3y)2-48

⇒(4x)2+2.3y.4x+(3y)2-((4x)2-2.4x.3y+(3y)2)-48

⇒16x2+24xy+9y2-16x2+24xy-9y2-48

⇒48xy-48

⇒48(xy-1)



Q13 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 13

(i) (7p+9q)(7p-9q)

⇒7p(7p-9q)+9q(7p-9q)

⇒49p2-63pq+63pq-81q2

⇒49p2-81q2


(ii) $\left(2x-\dfrac{3}{x}\right)\left(2x+\dfrac{3}{x}\right)$

⇒$(2x)^2-\left(\dfrac{3}{x}\right)^2$

⇒$(2x)^2-\left(\dfrac{3}{x}\right)^2$

⇒Since it is in the form of (a+b)(a-b)=a2-b2

∴ $4x^2-\dfrac{9}{x^2}$



Q14 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 14

(i) (2x-y+3)(2x-y-3)

⇒((2x-y)+3)((2x-y)-3)

It is in the form of (a+b)(-a-b)=a2-b2

∴(2x-y)2-32
⇒(2x)2-2.(2x).(y)+y2-9
⇒4x2-4xy+y2-9

(ii) (3x+y-5)(3x-y-5)
⇒(3x+(y-5))(3x-(y+5))
⇒[(3x-5)+y][(3x-5)-y]
⇒It is in the form of (a+b)(a-b)=a2-b2
∵a=3x-5 ; b=y
∴(3x-5)2-y2
⇒(3x)2-2.(3x).(5)+52-y2
⇒9x2-30x+25-y2


Q15 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 15

(i) $\left(x+\dfrac{2}{x}-3\right)\left(x-\dfrac{2}{x}-3\right)$
⇒$\left((x-3)+\dfrac{2}{x}\right)\left((x-3)-\dfrac{2}{x}\right)$
It is in the form of (a+b)(a-b)=a2-b2
∵a=x-3 ; $b=\dfrac{2}{x}$
⇒$(x-3)^2-\left(\dfrac{2}{x}\right)^2$
⇒$x^2-2.(x).3+3^2-\dfrac{4}{x^2}$
⇒$x^2-6x+9-\dfrac{4}{x^2}$

(ii) (5-2x)(5+2x)(25+4x2)
It is in the form of (a+b)(a-b)=a2-b2
∴(52-(2x)2)(25+4x2)
⇒(25-4x2)(25+4x2)
⇒(25)2-(4x2)2
⇒625-16x4


Q16 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper


Question 16

(i) (x+2y+3)(2y+x+7)
⇒x(2y+x+7)+2y(2x+x+7)+3(2y+x+7)
⇒2xy+x2+7x+4y2+2xy+14y+6y+3x+21
⇒x2+4y2+4xy+10x+20y+21

(ii) (2x+y+5)(2x+y-9)
⇒2x(2x+y-9)+y(2x+y-9)+5(2x+y-9)
⇒4x2+2xy-18x+2xy+y2-9y+10x+5y-45
⇒4x2+y2+4xy-8x-4y-45

(iii) (x-2y-5)(x-2y+3)
⇒x(x-2y+3)-2y(x-2y+3)-5(x-2y+3)
⇒x2-2xy+3x-2xy+4y2-6y-5x+10y-15
⇒x2+4y2-4xy-2x-4y-15

(iv) (3x-4y-2)(3x-4y-6)
⇒3x(3x-4y-6)-4y(3x-4y-6)-2(3x-4y-6)
⇒9x2-12xy-18x-12xy+16y2+24y-6x+8y+12
⇒9x2+16y2-24xy-24x+32y+12



Q17 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 17

(i) (2p+3q)(4p2-6pq+9q2)
Sol :
(2p+3q)((2p)2-2p.3q+(3q)2)
It is in the form of (a+b)(a2-ab+b2)=a3+b3
∴Here, a=2p ; b=3q
∴(2p)3+(3q)3
⇒8p3+27q3

(ii) $\left(x+\dfrac{1}{x}\right)\left(x^2-1+\dfrac{1}{x^2}\right)$
Sol :
It is in the form of (a+b)(a2-ab+b2)=a3+b3
∴Here a=x ; $b=\dfrac{1}{x}$
∴$x^3+\dfrac{1}{x^3}$


Q18 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 18

(i) (3p-4q)(9p2+12pq+16q2)
(3p-4q)((3p)2+3p.4q+(4q)2)
It is in the form of (a-b)(a2+ab+b2) is a3-b3
∴Here 3p=a ; b=4q
∴(3p)3-(4q)3
⇒27p3-64q3

(ii) $\left(x-\dfrac{3}{x}\right)\left(x^2+3+\dfrac{9}{x^2}\right)$
∴$\left(x-\dfrac{3}{x}\right)\left(x^2+x.\dfrac{3}{x}+\left(\dfrac{3}{x}\right)^2\right)$
It is in the form of (a-b)(a2+ab+b2) is a3-b3
∴Here, a=x ; $b=\dfrac{3}{x}$
⇒$x^3-\dfrac{27}{x^3}$


Q19 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 19

$(2x + 3y + 4z) (4x^2 + 9y^2 + 16z^2 – 6xy – 12yz – 8zx)$

Sol :
Given (2x+3y+4z)(4x2+9y2+16z2-6xy-12yz-8zx)
⇒(2x+3y+4z){(2x)2+(3y)2+(4z)2-2x.3y-3y.4z-4z.2x}
∴It is in the form of (a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3-3abc
∴Here a=2x , b=3y , c=4z
∴(2x)2+(3y)2+(4z)3-3.2x.3y.4z
⇒8x3+27y3+64z3-72xyz


Q20 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 20

Find the product of the following:

(i) (x + 1) (x + 2) (x + 3)
Sol :
(i) (x+1)(x+2)(x+3)
[x(x+2)+1(x+2)](x+3)
⇒(x2+2x+x+2)(x+3)
⇒(x2+3x+2)(x+3)
⇒(x2+3x+2)(x)+(x2+3x+2)3
⇒x3+5x2+2x+3x2+9x+6
⇒x3+6x2+11x+6


(ii) (x-2)(x-3)(x+4)
⇒[x(x-3)-2(x-3)](x+4)
⇒(x2-3x-2x+6)(x+4)
⇒(x2-5x+6)(x+4)
⇒(x2-5x+6)x+(x2-5x+6)4
⇒x3-5x2+6x+4x2-20x+24
⇒x3-x2-14x+24


Q21 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 21

Find the coefficient of $x^2$ and x in the product of (x – 3) (x + 7) (x – 4)

Sol :
⇒Given : (x-3)(x+7)(x-4)
⇒(x(x+7)-3(x+7))(x-4)
⇒(x2+7x-3x-21)(x-4)
⇒(x2+4x-21)x-4(x2+4x-21)
⇒x3+4x2-21x-4x2-16x+84
⇒x3-37x+84
∴ Coefficient of $x^2$ is 0, coefficient of x is -37


Q22 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 22

If $a^2 + 4a + x = (a + 2)^2$, find the value of x.

Sol :
Given : 
⇒a2+4a+x=(a+2)2
⇒a2+4a+x=a2+2.a.2+22
⇒a2+4a+x=a2+4a+4
⇒x=a2+4a+4-a2-4a
⇒x=4


Q23 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 23

(i) (101)2
⇒(100+1)2
⇒(100)2+2.100.1+12
⇒10000+200+1
⇒10201

(ii) (1003)2
⇒(1000+3)2
⇒(1000)2+2.1000.3+32
⇒1000000+6000+9
⇒1006009

(iii) (10.2)2
⇒(10+0.2)2
⇒(10)2+2.10×0.2+(0.2)2
⇒100+4+0.04
⇒104.04


Q24 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper


Question 24

(i) 992
⇒(100-1)2
⇒(100)2-2.100.1+12
⇒10000-200+1
⇒9801

(ii) (9997)2
⇒(10000-3)2
⇒100002-2.10000.9+32
⇒100000000-60000+9
⇒99940009
In this we used the (a-b)2
formulae i.e. (a2+2ab+b2)

(iii) (9.8)2
⇒(10-0.2)2
⇒102-2×10×0.2+(0.2)2
⇒100-4+0.4
⇒96.04


Q25 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 25

(i) (103)3
⇒(100+3)3
∴It is in the form of 
(a+b)3=a3+3a2b+3ab2+b3
∴Here a=100 ; b=3
⇒(100)3+3×(100)2×3+3×100×(3)2+33
⇒1000000+90000+2700+27
⇒1092727

(ii) 993
⇒(100-1)3
∴It is in the form of 
(a-b)3=a3-3a2b+3ab2-b3
∴Here a=100 ; b=1
⇒(100)3-3×(100)2×1+3×100×(1)2-(1)3
⇒1000000-30000+300-1
⇒970299

(iii) (10.1)3
⇒(10+0.1)3
⇒103+3×102×(0.1)+3×10×(0.1)2+(0.1)3
⇒1000+30+0.3+0.001
⇒1030.301


Q26 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 26

If 2a – b + c = 0, prove that $4a^2 – b^2 + c^2 + 4ac = 0$

Hint: 2a – b + c = 0 ⇒ $(2a + c)^2= b^2$
Sol :
Given : 2ab+c=0
⇒(2a+c)=0
Squaring both sides
⇒(2a+c)2=b2
⇒(2a)2+2.2a.c+c2=b2
⇒4a2+4ac+c2=b2
⇒4a2-b2+c2+4ac=0
Hence proved


Q27 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 27

If a + b + 2c = 0, Prove that $a^3 + b^3 + 8c^3 = 6abc$

Sol :
⇒Given : a+b+2c=0
⇒a+b=-2c...(i)
⇒Cubing on both sides
⇒(a+b)3=(-2c)3
⇒a3+b3+3a2b+3ab2=-8c3
⇒a3+b3+3ab(a+b)=-8c3 [from (i)]
⇒a3+b3+3ab(-2c)=-8c3
⇒a3+b3-6abc=-8c3
⇒a3+b3+8c3=6abc
Hence proved


Q28 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 28

If a + b + c = 0, then find the value of  $\dfrac{a^2}{bc} + \dfrac{b^2}{ca} + \dfrac{c^2}{ab}$

Sol :
⇒Given a+b+c=0
⇒a+b=-c...(i)
Cubing on both sides
⇒(a+b)3=(-c)3
⇒a3+b3+3a2b+3ab2=-c3
⇒a3+b3+3ab(a+b)=-c3
⇒a3+b3+3ab(-c)=-c3
⇒a3+b3-3abc=-c3
⇒a3+b3+c3=3abc
⇒$\dfrac{a^3+b^3+c^3}{abc}=3$
⇒$\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}=3$
∴$\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3$


Q29 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 29

If x + y = 4, then find the value of $x^3 + y^3 + 12xy – 64$.

Sol :
⇒Given x+y=4
Cubing on both sides
⇒(x+y)3=43
⇒x3+3x2y+3xy2+y3=64
⇒x3+3xy(x+y)+x3+
⇒x3+3xy(4)+y3=64
⇒x3+12xy+y3=64
⇒x3+y3+12xy-64=0


Q30 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 30

(i) (27)3+(-17)3+(-10)3
∴If a+b+c=0; then a3+b3+c3=3abc
∴Here a=27 , b=17 , c=-10
∴27-17-10=0
∴a3+b3+c3=3abc
=3(27)(-17)(-10)
=13770

(ii) (-28)3+153+133
If a+b+c=0 ; then a3+b3+c3=3abc
⇒-28+15+13=0
∴⇒a3+b3+c3=3abc
=3(-28)(15)(13)
=-16380


Q31 | Ex-3.1 | Class 9 | Expansions | ML Aggarwal | Chapter 3 | myhelper

Question 31

Using suitable identity, find the value of:

$\dfrac{86×86×86+14×14×14}{86×86-86×14+14×14}$
Sol :
Given $\dfrac{86\times 86\times 86+14\times 14\times 14}{86\times 86-86\times 14 +14\times 14}$
∴It is in the form of $\dfrac{a^3+b^3}{a^2-ab+b^2}=(a+b)$
∴$\dfrac{(86)^3+(14)^3}{86^2-86\times 14+14^2}=86+14$
=100

No comments:

Post a Comment

Contact Form

Name

Email *

Message *