Exercise 1.5
Q1 | Ex-1.5 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper
Question 1
Represent the following rational numbers on the number line:
(i) $\frac{11}{4}$
(ii) $4\frac{3}{5}$
(iii) $\frac{-9}{7}$
(iv) $\frac{-2}{-5}$
(iv) $\frac{-2}{-5}$
Sol :
(i) $\frac{11}{4}=2.75$
(ii) $4 \frac{3}{5}=\frac{23}{5}=4.6$
(iii) $\frac{-9}{7}=-1 \frac{2}{7}$
(iv) $\frac{-2}{-5}=\frac{2}{5}=0.4$
Question 2
Write the rational numbers for each point labelled with a letter:
Sol :
(i)
$A=\frac{3}{7}$
$B=\frac{7}{7}=1$
$C=\frac{8}{7}$
$D=\frac{12}{7}$
$E=\frac{13}{7}$
(ii)
$P=\frac{-3}{8}$
$Q=\frac{-4}{8}=-\frac{1}{2}$
$R=\frac{-7}{8}$
$S=\frac{-11}{8}$
$T=\frac{-12}{8}=\frac{-3}{2}$
Question 3
Find twenty rational numbers between $\frac{-3}{7} \text{ and } \frac{2}{3}$
Sol :
$\frac{-3}{7} \quad \frac{-3}{10}$ $\frac{-5} {20}\frac{-2}{10}$ $\frac{-3}{20} \frac{-1}{10}\frac{-1}{20}$ $0 \frac{1}{20} \frac{1}{10} \frac{3}{20} \frac{2}{10} \frac{5}{20} \frac{3}{10}$
$\begin{array}{ccccccc}\frac{7}{20} & \frac{4}{10} & \frac{9}{20} & \frac{5}{10} & \frac{11}{20} & \frac{6}{10} & \frac{2}{3}\end{array}$
Question 4
Find six rational numbers between $\frac{-1}{2}$ and $\frac{5}{4}$
Sol :
Q5 | Ex-1.5 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper
Question 5
Find three rational numbers between -2 and -1.
Sol :
Q6 | Ex-1.5 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper
Question 6
Write ten rational numbers which are greater than 0.
1,2,3,4,5,6,7,8,9,10
Sol :
-5,-6,-7,-8,-9
$-\frac{7}{3}$ (Numerator is greater then denominator (numerically)
$\therefore \quad \frac{-7}{3}$ is different among all rational numbers
Q7 | Ex-1.5 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper
Question 7
Write five rational numbers which are smaller than -4.
-5,-6,-7,-8,-9
Q8 | Ex-1.5 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper
Question 8
Identify the rational number which is different from the other three. Explain your reasoning
$\frac{-5}{11},\frac{-1}{2},\frac{-4}{9},\frac{-7}{3}$
Sol :$-\frac{7}{3}$ (Numerator is greater then denominator (numerically)
$\therefore \quad \frac{-7}{3}$ is different among all rational numbers







No comments:
Post a Comment