ML Aggarwal Class 8 Chapter 1 Rational Numbers Exercise 1.4

Exercise 1.4


Q1 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers | Chapter 1 | myhelper

Question 1

Find the value of the following:

(i) $-\frac{3}{7} \div 4$

(ii)  $4 \frac{5}{8} \div\left(\frac{-4}{9}\right)$

(iii) $\frac{-8}{9} \div \frac{-3}{5}$

Sol :

(i) $-\frac{3}{7} \div 4$

=$-\frac{3}{7} \div \frac{4}{1}$

=$\frac{-3}{7} \times \frac{1}{4}$

=$\frac{-3 \times 1}{7 \times 4}$

=$\frac{-3}{28}$


(ii)  $4 \frac{5}{8} \div\left(\frac{-4}{9}\right)$

=$\frac{37}{8} \div\left(\frac{-4}{9}\right)$

=$\frac{37}{8} \times\left(\frac{9}{-4}\right)$

=$\frac{37 \times 9}{8 \times(-4)}$

=$-\frac{333}{32}$

=$-10 \frac{13}{32}$


(iii) $\frac{-8}{9} \div \frac{-3}{5}$

=$\frac{-8}{9} \times \frac{5}{-3}$

=$\frac{-8 \times 5}{9 x-3}$

=$\frac{-40}{-27}$

=$\frac{40}{27}=1 \frac{13}{27}$
 


Q2 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 2

State whether the following statements are true or false:
(i) $\frac{-9}{13} \div \frac{2}{7}$ is a rational number
(ii) $\frac{4}{13} \div \frac{11}{12}=\frac{11}{12} \div \frac{4}{13}$
(iii) $\frac{-3}{4} \div \left(\frac{5}{9}\div \frac{-4}{11}\right)=\left(\frac{-3}{4}\div \frac{5}{9}\right) \div \frac{-4}{11}$
(iv) $\frac{13}{14} \div \frac{-5}{7} \neq \frac{-5}{7} \div \frac{13}{14}$
(v) $\left(-7 \div \frac{4}{5}\right) \div \frac{-9}{10} \neq -7 \div \left(\frac{4}{5} \div \frac{-9}{10}\right)$
(vi) $\frac{-7}{24} \div \frac{6}{11}$ is not a rational number.

Sol :
(i) true 

(ii) false 

(iii) false 

(iv) true 

(v) true 

(vi)false     



Q3 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 3

The product of two rational numbers is $\frac{-11}{12}$. If one of them is $2\frac{4}{9}$ , find the other.
Sol :
Let unknown number be x

⇒$x \times 2 \frac{4}{9}=\frac{-11}{12}$

⇒$x \times \frac{22}{9}=\frac{-11}{12}$

$x=\frac{-11}{12}$ x $\frac{22}{9}$

⇒$\frac{-11}{12} \times \frac{9}{22}$

$x=\frac{-3}{8}$

Other number $=\frac{-3}{8}$



Q4 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 4

By what rational number should $\frac{-7}{12}$ be multiplied to get the product as $\frac{5}{14}$ ?
Sol :
Let unknown number be x

$x \times\left(\frac{-7}{12}\right)=\frac{5}{14}$

$x=\frac{5}{14} \div\left(\frac{-7}{12}\right)$

$=\frac{5}{14} \times \frac{12}{-7}$

$=\frac{5 \times 12}{14 \times(-7)}$

$=-\frac{60}{98}$

$=\frac{-30}{49}$



Q5 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 5

By what rational number should -3 is divided to get $\frac{-9}{13}$
Sol :

Let unknown number be x 

$\frac{-3}{x}=\frac{-9}{13}$

$x=-\frac{3}{1} \div\left(\frac{-9}{13}\right)$

$=\frac{-3}{1} \times \frac{13}{-9}$

$x=\frac{13}{3}=4 \frac{1}{3}$



Q6 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 6

Divide the sum of $\frac{-13}{8}$ and $\frac{5}{12}$ by their difference.
Sol :

Sum of number = $\frac{-13}{8}+\frac{5}{12}$

$=\frac{(-13 \times 3)+(5 \times 2)}{24} \quad$ LCM of $812=24$

⇒$\frac{-39+10}{24}$

⇒$\frac{-29}{24}$

sum of numbers = $\frac{-29}{24}$

difference of numbers= $\frac{(-13 \times 3)-(5 \times 2)}{24}$

$\frac{-39-10}{24}$

Difference of numbers $=\frac{-49}{24}$

Required product = sum of numbers ÷ difference of numbers 

$\begin{aligned} &=\frac{-29}{24} \div\left(-\frac{49}{24}\right) \\=& \frac{-29}{24} \times \frac{24}{-49} \\ &=\frac{29}{49} \end{aligned}$



Q7 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 7

Divide the sum of $\frac{8}{3}$ and $\frac{4}{7}$ by the product of $\frac{-3}{7}$ and $\frac{14}{9}$

Sol :

$\begin{aligned} \text { Sum of two numbers } &=\frac{8}{3}+\frac{4}{7} \\ &=\frac{(8 \times 7)+(3 \times 4)}{21} \text { LCM Of } 3,7=21 \\ &=\frac{56+12}{21} \\ \text { Sum of two numbers } &=\frac{68}{21} \end{aligned}$

$\begin{aligned} \text { Product of given numbers } &=\frac{-3}{7} \times \frac{14}{9} \\ &=\frac{-2}{3} \end{aligned}$

$\begin{aligned} \text { Required product } &=\frac{\text { Sum of } \frac{8}{3} \text { and } \frac{4}{7}}{\text { product of }\frac{3}{1} \text { and } \frac{14}{9}} \\ &=\frac{68}{21} \div\left(\frac{-2}{3}\right) \\ &=\frac{68}{21} \times \frac{3}{-2} \\ &=\frac{-34}{7} \end{aligned}$



Q8 | Ex-1.4 | Class 8 | ML Aggarwal | Rational Numbers |Chapter 1 | myhelper

Question 8

If $p=\frac{-3}{2},q=\frac{4}{5}$ and $r=\frac{-7}{12}$, then verify that (p ÷ q) ÷ r ≠ p ÷ (q ÷ r).
Sol :

Given $\quad P=\frac{-3}{2}, \quad q=\frac{4}{5}, \quad \ r=\frac{-7}{12}$

$(p \div q) \div r=p \div(q \div \ r)$

$\begin{aligned} \text { L.H.S } &=(p \div q) \div r \\ &=\left(\frac{-3}{2} \div \frac{4}{5}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-3}{2} \times \frac{5}{4}\right) \div\left(\frac{-7}{12}\right) \\ &=\left(\frac{-15}{8}\right) \div\left(-\frac{7}{12}\right) \\ &=\frac{-15}{8} \times \frac{12}{-7} \\ &=\frac{-15}{2} \times \frac{3}{-7} \end{aligned}$

$\begin{aligned} \text { L.H.S } &=+\frac{45}{14} \\ \text { R.H.S } &=p \div(q \div \ r) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \div\left(\frac{-7}{12}\right)\right) \\ &=\frac{-3}{2} \div\left(\frac{4}{5} \times \frac{12}{-7}\right) \\ &=\frac{-3}{2} \div\left(-\frac{48}{35}\right) \\ &=\frac{-3}{2} \times-\frac{35}{48} \\ R \cdot H S &=\frac{35}{32} \\ L \cdot H \cdot S \neq R \cdot H \cdot S \\(p \div q) \div r \neq P \div(q \div \tau) \end{aligned}$

No comments:

Post a Comment

Contact Form

Name

Email *

Message *