Exercise 1.2
Q1 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 1
Q2 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 2
Q3 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 3
Q4 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 4
x⇒$\frac{-11}{10}$
Q5 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 5
Subtract the sum of $\frac{-5}{7} \text { and }\frac{-8}{3}$ from the sum of $\frac{5}{2} \text{ and } \frac{-11}{12}$
Sol :
$=\left[\frac{5}{2}+\left(\frac{-11}{12}\right)\right]-\left[\frac{-5}{7}+\left(\frac{-8}{3}\right)\right]$
$=\left[\frac{5}{2}-\frac{11}{12}\right]-\left[\frac{-5}{7}-\frac{8}{3}\right]$
$=\left(\frac{5 \times 6- 11 \times 1}{12}\right)-\left(\frac{-5 \times 3-8\times 7}{21}\right)$
$=\left(\frac{30- 11}{12}\right)-\left(\frac{-15-56}{21}\right)$
$=\left(\frac{19}{12}\right)-\left(\frac{-71}{21}\right)=\frac{19}{12}+\frac{71}{21}$
$=\frac{19 \times 7+ 71 \times 4}{84}=\frac{133+284}{84}$
$=\frac{417}{84}=\frac{139}{28}=4\frac{27}{28}$
Q6 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 6
If $x=\frac{-4}{7}$ and $y=\frac{2}{5}$ verify that
(i) x-y≠y-x
(ii) -(x+y)=-x+(-y)
Sol :
(i)
$x=\frac{-4}{7}$ and $y=\frac{2}{5}$
Now,
$x-y=\frac{-4}{7}-\left(\frac{2}{5}\right)$
Taking LCM
$=\frac{-4}{7}-\frac{-2}{5}=\frac{-20-14}{35}=\frac{-34}{35}$
And $y-x=\frac{2}{5}-\left(\frac{-4}{7}\right)$
$=\frac{2}{5}+\frac{4}{7}=\frac{14+20}{35}=\frac{34}{35}$
ஃx-y ≠ y-x
(ii)
$x=\frac{-4}{7}$ and $y=\frac{2}{5}$
Now,
-(x+y)=-x+(-y)
LHS=-(x+y)
$=-\left(\frac{-4}{7}+\frac{2}{5}\right)$
$=-\left(\frac{-4\times 5 + 2 \times 7 }{35}\right)$
$=- \times \frac{-20+14}{35}=- \times \frac{-6}{35}=\frac{6}{35}$
RHS=-x+(-y)
$=-\left(\frac{-4}{7}\right)+\left(- \times \frac{2}{5} \right)$
$=\frac{+4}{7}+\frac{-2}{5}=\frac{+4}{7}-\frac{2}{5}$
$=\frac{4\times 5-2\times 7}{35}=\frac{20-14}{35}$
$=\frac{6}{35}$
ஃ-(x+y)=-x+(-y)
Sol :
$x=\frac{4}{9} ; \quad y=\frac{-7}{12}$
Consider
x-y = $\frac{4}{9}-\left(-\frac{7}{12}\right)$
$=\frac{4}{9}+\frac{7}{12}$
⇒$\frac{(4 \times 4)+(7 \times 3)}{36}$ (∴LCM OF 9,12= 36)
⇒$\frac{16+21}{36}$
⇒$x-y=\frac{37}{36}$
Consider
y-x = $\frac{-7}{12}-\left(\frac{4}{9}\right)$
⇒$\frac{-7}{12}-\frac{4}{9}$
⇒$\frac{(-7 \times 3)-(4 \times 4)}{36}$ LCM of 9, 12=36
⇒$\frac{-21-16}{36}$
y-x ⇒$\frac{-37}{36}$
ஃx-y ≠ y-x
Q7 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 7
If $x=\frac{4}{9} ; \quad y=\frac{-7}{12} ; \quad z=\frac{-2}{3}$ , then verify that x – (y – z) ≠ (x – y)– z
Sol :
$x=\frac{4}{9} ; \quad y=\frac{-7}{12} ; \quad z=\frac{-2}{3}$
Consider
$x-(y-z)=\frac{4}{9}-\left(\frac{-7}{12}-\left(\frac{-2}{3}\right)\right)$
$=\frac{4}{9}-\left(\frac{-7}{12}+\frac{2}{3}\right)$
⇒$\frac{4}{9}-\left(\frac{(-7 \times 1)+(2 \times 4)}{12}\right)$
⇒$\frac{4}{9}-\left(\frac{-7+8}{12}\right)$
⇒$\frac{4}{9}-\frac{1}{12}$
⇒$\frac{(4 \times 4)-(1 \times 3)}{36}$
=$\frac{16-3}{36}$
$x-(y-z)$ =$\frac{13}{36}$
Consider ( x-y)-z =$\left[\frac{4}{9}-\left(\frac{-7}{12}\right)\right]-\left(\frac{-2}{3}\right)$
$=\left[\frac{4}{9}+\frac{7}{12}\right]+\frac{2}{3}$
$=\left[\frac{(4 \times 4)+(-7 \times 3)}{36}\right]+\frac{2}{3}$
$=\frac{16+21}{36}+\frac{2}{3}$
$=\frac{37}{36}+\frac{2}{3}$
$=\frac{(37 \times 1)+(2 \times 12)}{36}$
⇒$\frac{37+24}{36}$
$(x-y)-z=\frac{61}{36}$
∴ $x-(y-z) \neq(x-y)-z$Q8 | Ex-1.2 | Class 8 | ML Aggarwal | Rational Numbers | myhelper
Question 8
No comments:
Post a Comment