ML AGGARWAL CLASS 8 CHAPTER 3 SQUARES AND ROOTS Exercise 3.3

 Exercise 3.3

Question 1

By repeated subtraction of odd numbers starting from 1, find whether the following numbers are perfect squares or not? If the number is a perfect square then find its square root:
(i) 121
(ii) 55
(iii) 36
(iv) 90
Sol :
(i) 121 

given number = 121

121-1=120 ; 120-3=117 ; 117-5=112 ; 112-7=105

105-9=96 ; 96-11=85 ; 85-13=72 ; 72-15=57

57-17=40 ; 40-19=21 ; 21-21=0

∴ 121 is a perfect square 

we have done 11 Subtractions

Hence, square root of 121 is $11 \Rightarrow \sqrt{121}$ = 11


(ii) 55 

given number = 55

55-1=54 ; 54-3=51 ; 51-5=46 ; 46-7=39

39-9=30 ; 30-11=29 ; 29-13=16 ; 16-15=1

1-17=-16

∴ 55 is not a perfect square   


(iii) 36 

Given number  =36

36-1=35 ; 35-3=32 ; 32-5=27 ; 27-7=20

20-9=11 ; 11-11=0

36 is a perfect square

we have done 6 subtractions

Hence, square root of 36 i.e $\sqrt{36}$= 6


(iv) 90

Given number = 90

90-1=89 ; 89-3=86 ; 86-5=81 ; 81-7=74: 74-9=65

65-11=54 ; 54-13=41 ; 41-15=25 ; 25-15=10 ; 10-17=-7

∴ 90 is not a perfect square


 Question 2

Find the square roots of the following numbers by prime factorisation method:
(i) 784
(ii) 441
(iii) 1849
(iv) 4356
(v) 6241
(vi) 8836
(vii) 8281
(viii) 9025
Sol :

(i) 784

Given number = 784 

⇒ $\begin{array}{r|l}2&784\\ \hline 2& 392 \\ \hline 2&196\\ \hline 2& 98\\ \hline 7& 49 \\ \hline 7&7\\ \hline&1\end{array}$

784 = 2 x 2 x 2 x 2 x 7 x7

$\sqrt{784}=\sqrt{2^{2} \times 2 \times 7^{2}}$

$\sqrt{784}=2 \times 2 \times 7=28$


(ii) 441

Given number = 441 

 $\begin{array}{r|l}3&441\\ \hline 3& 147\\ \hline 7&49\\ \hline 7& 7\\  \hline&1\end{array}$

441= 3 x 3x 7 x 7 

$\sqrt{441}=\sqrt{3^{2} \times 7^{2}}$

$\sqrt{441}=3 \times 7=21$


(iii) 1849

Given number = 1849

 $\begin{array}{r|l}43&1849\\ \hline 43& 43\\ \hline&1\end{array}$

1849 = 43 x 43

$\sqrt{1849}=\sqrt{43 \times 43}$

$\sqrt{1849}=43$


(iv) 4356

Given number = 4356 

 $\begin{array}{r|l}2&4356\\ \hline 2&2178 \\ \hline 3&1089\\ \hline 3& 368\\ \hline 11& 121 \\ \hline 11&11\\ \hline&1\end{array}$

4356 = 2 x 2 x 3 x 3 x 11 x 11

$\sqrt{4356}=\sqrt{2^{2} \times 3^{2} \times 11^{2}}$

$\sqrt{4356}=2 \times 3 \times 11=66$


(v) 6241 

Given number = 6241

$\begin{array}{r|l}79&6241\\ \hline 79& 79\\ \hline&1\end{array}$

 6241 = 79 x 79

$\sqrt{6241}=\sqrt{79^{2}}=79$


(vi) 8836 

Given number = 8836

 $\begin{array}{r|l}2&8836\\ \hline 2& 4418\\ \hline 47&2209\\ \hline 47&47\\  \hline&1\end{array}$

8836 = 2 x 2 x 47 x 47

$\sqrt{8836}=\sqrt{2^{2} \times 47^{2}}$

$\sqrt{8836}=2 \times 47=94$


(vi)  8281 

Given number = 8281 

 $\begin{array}{r|l}7&8281\\ \hline 7& 1183\\ \hline 13&169\\ \hline 13&13\\  \hline&1\end{array}$

8281 =7 x 7 x 13 x 13 

$\sqrt{8281}=\sqrt{7^{2} \times 13^{2}}$

$\sqrt{8281}=7 \times 13=91$ 


(viii) 9025

 $\begin{array}{r|l}5&9025\\ \hline 5& 1805\\ \hline 19&361\\ \hline 19&19\\  \hline&1\end{array}$

9025 = 5 x 5 x 19 x 19

$\sqrt{9025}=\sqrt{5^{2} \times 19^{2}}$

$\sqrt{9025}=95$


 Question 3

Find the square roots of the following numbers by prime factorisation method:
(i) $9\dfrac{67}{121}$
(ii) $17\dfrac{13}{36}$
(iii) 1.96
(iv) 0.0064
Sol :

(i)  $9 \frac{67}{121}=\frac{1156}{121}$

Sol: 

 ⇒ $\begin{array}{r|l}2&1156\\ \hline 2& 578\\ \hline 17&289\\ \hline 17&17\\  \hline&1\end{array}$

⇒$1156=2 \times 2 \times 17 \times 17$

⇒$9 \frac{67}{121}=\frac{2 \times 2 \times 17 \times 17}{11 \times 11}$

⇒$\sqrt{9 \frac{67}{121}}=$ $\sqrt{\frac{2 \times 2 \times 17 \times 17}{11 \times 11}}$

$=\frac{2 \times 17}{11}$

⇒ $\sqrt{9 \frac{67}{121}}=\frac{34}{11}$


(ii) $17 \frac{13}{36}=\frac{625}{36}$

Sol:

$\begin{array}{r|l}5&625\\ \hline 5& 125\\ \hline 5&25\\ \hline 5&5\\  \hline&1\end{array}$

$625=5 \times 5 \times 5 \times 15$

$17 \frac{13}{36}=\frac{5 \times 5 \times 5 \times 5}{6 \times 6}$

$\sqrt{17 \frac{13}{36}}=\sqrt{\frac{5 \times 5 \times 5 \times 5}{6 \times 6}}$

$=\frac{5 \times 5}{6}$

$\sqrt{17 \frac{13}{36}}$ = $\frac{25}{6}$


(iii) $1.96=\frac{196}{100}$

Sol:

$1.96=\frac{2 \times 2 \times 7 \times 7}{10 \times 10}$

$\begin{array}{r|l}2&196\\ \hline 2& 98\\ \hline 7&49\\ \hline 7&7\\  \hline&1\end{array}$

$196=2 \times 2 \times 7 \times 7$

$1.96=\frac{2 \times 2 \times 7 \times 7}{10 \times 10}$

$\sqrt{1.96}=\frac{2 \times 7}{10}=1.4$


(iv)  0.0064

Sol: 

$0.0064=\frac{64}{10000}$

$\begin{array}{r|l}2&64\\ \hline 2&32 \\ \hline 2&16\\ \hline 2& 8\\ \hline 2& 4 \\ \hline 2&1\\ \hline&1\end{array}$

$0.0064=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{10 \times 10 \times 10 \times 10}$

$\sqrt{0.0064}=\sqrt{\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{10 \times 10 \times 10 \times 10}}$

$=\frac{2 \times 2 \times 2}{10 \times 10}=0.08$

$\sqrt{0.0064}=0.08$


Question 4

For each of the following numbers, find the smallest natural number by which it should be multiplied so as to get a perfect square. Also, find the square root of the square number so obtained:
(i) 588
(ii) 720
(iii) 2178
(iv) 3042
(v) 6300
Sol :

(i) Given number =588

Expressing in prime factors

$\begin{array}{r|l}2&588\\ \hline 2&294 \\ \hline 7&147\\ \hline 3& 21\\ \hline 7& 7 \\ \hline&1\end{array}$

$588=2 \times 2 \times 7 \times 7 \times 3$

Since ' 3 ' left unpaired, so to

make   588 it should multiplied 

by ' 3 '
 
$588 \times 3=2 \times 2 \times 7 \times 7 \times 3 \times 3$

$1764=2^{2} \times 7 \times 3^{2}$

$\sqrt{1764}=\sqrt{2^{2} \times 7^{2}+3^{2}}$

$\sqrt{1764}=2 \times 7 \times 3=42$


(ii) Given number =720

Expressing in prime factors

 $\begin{array}{r|l}2& 720\\ \hline 2& 360 \\ \hline 2&180\\ \hline 2& 90\\ \hline 3& 45 \\ \hline 3&15\\  \hline 5&5\\ \hline&1\end{array}$

$720=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$

Since 5 left unpaired, to make 

720 perfect square it should be

multiplied by 5

$3600=2^{2} \times 3^{2} \times 5^{2} \times 2^{2}$

$\sqrt{3600}= \sqrt{2^{2} \times 2^{2} \times 3^{2} \times 5^{2}}$

$\sqrt{3600}=2 \times 2 \times 3 \times 5=60$


(iii)  Sol:

Given number 2178

Expressing in prime factors

$\begin{array}{r|l}2&2178\\ \hline 3&1089 \\ \hline 3&363\\ \hline 11& 121\\ \hline 11& 11 \\ \hline&1\end{array}$
\
$2178=2 \times 3 \times 3 \times 11 \times 11$

since 2' left unpaired to make 2178  a product square it should be multiplied by 2

$\begin{aligned} 2178 \times 2 &=2 \times 2 \times 3 \times 3 \times 11 \times 11 \\ 4356 &=2^{2} \times 3^{2} \times 11^{2} \end{aligned}$

$\sqrt{4356}=\sqrt{2^{7} \times 3^{2} \times 11^{2}}$

= 2 x 3 x 11

$\sqrt{4356}=66$


(iv) Given number =3042

Expressing in prime factors 

$\begin{array}{r|l}2&2178\\ \hline 3&1089 \\ \hline 3&363\\ \hline 11& 121\\ \hline 11& 11 \\ \hline&1\end{array}$

$3042=2 \times 3 \times 3 \times 13 \times 13$
 
since '2' left unpaired so to make 3042 a perfect square it should be multiplied by ' 2 '

$3042 \times 2=2 \times 2 \times 3 \times 3 \times 13 \times 13$

$6084=2^{2} \times 3^{2} \times 13^{2}$

$\sqrt{6084}=2 \times 3 \times 13=78$


(v) 6300

Given number =6300

Express in y in prime factors

$\begin{array}{r|l}2 & 6300 \\ \hline 2 & 3150 \\ \hline 5 & 1575 \\ \hline 5 & 315 \\ \hline 7 & 63 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline&1\end{array}$

$6300=2 \times 2 \times 5 \times 5 \times 7 \times 3 \times 3$ 

 since '7' left unpaired , so to make 6300 a perfect square , it should be multiplied by '7' 

$6300 \times 7=2 \times 2 \times 5 \times 5 \times 7 \times 7 \times 3 \times 3$

$\sqrt{44100}=\sqrt{2^{2} \times 5^{2} \times 7^{2} \times 3^{2}}$

$\sqrt{44100}=2 \times 5 \times 7 \times 3$

$\sqrt{44100}=210$



Question 5

For each of the following numbers, find the smallest natural number by which it should be divided so that this quotient is a perfect square. Also, find the square root of the square number so obtained:
(i) 1872
(ii) 2592
(iii) 3380
(iv) 16224
(v) 61347
Sol :

(i)   Given number 1872 expressing in prime factors 

$\begin{array}{r|l}2 &1872 \\ \hline 2 & 936 \\ \hline 2 & 468 \\ \hline 2&234 \\ \hline 3 & 117 \\\hline 3 & 39 \\ \hline 13 & 13 \\ \hline & 1\end{array}$ 

Since 13 left unpaired, so to make 1872 a perfect square it should be divided by 13

$\frac{1872}{13}=\frac{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13}{13}$

$144=2 \times 2 \times 2 \times 2 \times 3 \times 3$

$\sqrt{144}=\sqrt{2^{2} \times 2^{2} \times 3^{2}}$

$\sqrt{144}=2 \times 2 \times 3=12$


(ii)  Given number 2592  expressing in prime number

$\begin{array}{r|l}2 &2592 \\ \hline 2 & 1296 \\ \hline 2 & 648 \\ \hline 2&324 \\ \hline 2 & 162 \\ \hline 2 & 81 \\ \hline 3 & 27 \\ \hline3 & 9 \\ \hline3 & 3 \\ \hline & 1\end{array}$ 

2592 =  $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

Since ' 2 ' lets unpaired, so to

make 2592 a prefect square, it

Should be divided ' 2 '

$\frac{2592}{2}=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3}{2}$
sqrt{2^{2}
$1296=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$$1

$\sqrt{1296}=\sqrt{2^{2} \times 2^{2} \times 3^{2} \times 3^{2}}$

$\sqrt{1296}=36$


(iii)  Given number 3380 expressing interms of prime factors 

$\begin{array}{r|l}2&3380\\ \hline 2&1690 \\ \hline 5&845\\ \hline 13& 169\\ \hline 13& 13 \\ \hline&1\end{array}$

since '5' is left unpaired so to make a perfect square it should be divided by 5 

$3380 \div 5=\frac{2 \times 2 \times 5 \times 13 \times 13}{5}$

$676=2 \times 2 \times 13 \times 13$

$\sqrt{676}=\sqrt{2 \times 2 \times 13 \times 13}$

$\sqrt{676}=2 \times 13 \in 26$


(iv) 16244

Expressing in terms of prime factors

16244

$\begin{array}{r|l}2 &16244 \\ \hline 2 & 8122 \\ \hline11 & 4061 \\ \hline 3&371 \\ \hline 3 & 117 \\ \hline 3 & 39 \\ \hline 13 & 13 \\ \hline & 1\end{array}$ 


Question 6

Find the smallest square number that is divisible by each of the following numbers:
(i) 3, 6, 10, 15
(ii) 6, 9, 27, 36
(iii) 4, 7, 8, 16
Sol :
(i) 3, 6 , 10, 15
The number which is divisible by
3, 6, 10, 15=The LCM of3,6,10,15

$\begin{array}{r|l}2 & 3, 6,10,15 \\ \hline 3 & 3,3,5,15 \\ \hline 5 & 1,1,5,5 \\ \hline & 1,1,1,1\end{array}$
=2×3×5=30
and smallest square number which is divisible by 30 = 30×30 = 900

(ii) 6, 9, 27, 36
The number which is divisible by 6, 9, 27, 36 is their LCM

$\begin{array}{r|l}2 & 6, 9, 27, 36 \\ \hline  2 & 3,9,27,18 \\ \hline  3& 3,9,27,9 \\ \hline 3& 1,3,9,3 \\ \hline 3 & 1,1,3,1 \\ \hline & 1,1,1,\end{array}$

=3×3×2×2×3=108
and the smallest square
=108×3=324

(iii) 4, 7, 8, 16
The number which is divisible by 4, 7, 8, 16 = LCM of their numbers

$\begin{array}{r|l} 2 & 4,7,8,16 \\ \hline 2 & 2,7,4,8 \\ \hline 2 & 1,7,2,4 \\ \hline 2 & 1,7,1,2 \\ \hline 7 & 1,7,1,1 \\ \hline & 1,1,1,1 \end{array}$

=2×2×2×2×7=112
The smallest square =112×7 =784



Question 7

4225 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Sol :
Total number of plants = 4225
∵The number of rows = Number of the plant in each row.
Number of rows = Square root of 4225

$\begin{array}{l|r} 5 & 4225 \\ \hline 5 & 845 \\ \hline 13 & 169 \\ \hline 13 & 13 \\ \hline & 1\end{array}$

$=\sqrt{5 \times 5 \times 13 \times 13}$
=5×13 =65

Number of rows=65
and number of plants in each row=65


Question 8 

The area of a rectangle is 1936 sq. m. If the length of the rectangle is 4 times its breadth, find the dimensions of the rectangle.
Sol:
Let breadth of rectangle = x .m 

given 

Length of rectangle is equal to 4 times the breadth 

∴ L = 4 . x 

area of rectangle = 1936 

l x b = 1936 

$\begin{aligned} 4 x \times x &=1936 \\ x^{2} &=\frac{1936}{4} \\ x^{r} &=484 \\ x &=22 \mathrm{~m} \end{aligned}$

hence breadth of rectangle = x = 22m 

length of rectangle $=4 x=4 \times 22=88 \mathrm{~m}$


Question 9

In a school a P.T. teacher wants to arrange 2000 students in the form of rows and columns for P.T. display. If the number of rows is equal to number of columns and 64 students could not be accommodated in this arrangement. Find the number of rows.
Sol :

let the no.of columns  = x

given no.of rows equal to no of column 

ஃ no of rows = x

Total students equal to 2000 but 64 students

could not be accommodated in These rows columns

$\begin{aligned} \therefore \quad x \times x &=2000-64 \\ x^{2} &=1936 \\ x &=\sqrt{1936} \\ x &=44 \end{aligned}$

hence , no of rows = 44

$\begin{array}{r|l}2 &1936 \\ \hline 2 & 868 \\ \hline2 &434 \\ \hline 2&242 \\ \hline 11 & 121 \\ \hline 11 & 11\\ \hline & 1\end{array}$

$1936=2 \times 2 \times 2 \times 2 \times 11 \times 11$

$\sqrt{1936}=2 \times 2 \times 11=44$


(v) Given number 61347 

expressing in terms of prime factors 

$\begin{array}{r|l}3&61347\\ \hline 11&20449 \\ \hline 11&1859\\ \hline 13& 169\\ \hline 13& 13 \\ \hline&1\end{array}$

61347 = $=3 \times 11 \times 11 \times 13 \times 13$

since 3 left unpaired so to make 61347 a perfect square it should be divided by 3

$61347 \div 3=\frac{3 \times 11 \times 11 \times 13 \times 13}{3}$

$20449=11 \times 11 \times 13 \times 13$

$\sqrt{20449}=\sqrt{11^{2} \times 13^{2}}$

$\sqrt{20449}=11 \times 13={143}$


(vi) let no of rows of plants in garden = x 

given each row contains as many plants as the no of rows 

no of plants in each row = x 

total no of plants = $x \times x=x^{2}$

given Total no.of plants in garden =4225

$\begin{aligned} \therefore \quad x^{2} &=4225 \\ x &=\sqrt{4225} \\ & x=65 \end{aligned}$

hence, no.of rows in garden = 65

no.of plants in a row $=65$


Question 10 

In a school, the students of class VIII collected ₹2304 for a picnic. Each student contributed as mdny rupees as the number of students in the class. Find the number of students in the class.
Sol :

Let no of students = x 

given contribution of such student = no of students 

∴ contribution of each students = $\bar{₹} x$

Total collected for Picnic =22304


∴ $x \times x=2304$

$x^{2}=2304$

$x=\sqrt{2304}$

x=48

Question 11

The product of two numbers is 7260. If one number is 15 times the other number, find the numbers.
Sol :

Let number is 15 times the other 

second number = 15.x

product of two number = 7260 

$\begin{aligned} 15 x \cdot x &=7260 \\ x^{2} &=\frac{7260}{15} \\ x^{2} &=484 \\ x &=\sqrt{484} \\ x &=22 \end{aligned}$

$\begin{array}{r|l}2&484\\ \hline 2&242 \\ \hline 11&121\\ \hline 11& 11\\ \hline&1\end{array}$

$484=2 \times 2 \times 11 \times 11$

$\sqrt{484}=2 \times 11=22$


Question 12 

Find three positive numbers in the ratio 2 : 3 : 5, the sum of whose squares is 950.
Sol :
Given number are in ratio of 2 : 3 : 5 

let number be 2x , 3x , 5x 

given sum of squares of numbers $=950$

$(2 x)^{2}+(3 x)^{2}+(5 x)^{2}=950$

$4 x^{2}+9 x^{2}+25 x^{2}=950$

$x^{2}=\frac{950}{38}$

$x^{2}=25$

x=5

$\begin{aligned} \text { Hence, } & \text { Numbers are } 2 x, 3 x, 5 x \\ & 10,15,25 \end{aligned}$
 

Question 13

The perimeter of two squares is 60 metres and 144 metres respectively. Find the perimeter of another square equal in area to the sum of the first two squares.
Sol:

Perimeters of two Squares $=60 \mathrm{~m}, 144 \mathrm{~m}$

$P_{1}=60 \mathrm{~m} ; P_{2}=144 \mathrm{~m}$

Perimeter let length of sides of square are = $x_{1}, x_{2}$

$\begin{aligned} \therefore P_{1} &=4 x_{1} \\ 60 &=4 x_{1} \\ x_{1} &=15 \mathrm{~m} \end{aligned}$

$P_{2}=4 x_{2}$

$144=4 x_{2}$

$x_{2}=36 m$

$\begin{aligned} \text { Areas } A_{1} &=x_{1}^{2} \\ A_{1} &=15^{2} \\ A_{1} &=225 \mathrm{~m}^{2} \end{aligned}$

Area $\begin{aligned} A_{2} &=x_{2}^{2} \\ A_{2} &=36^{2} \\ A_{2} &=1296 \mathrm{~m}^{2} \end{aligned}$

let a square of side x with area ' $A_{1}+A_{2}$'

$A=A_{1}+A_{2}$

$x^{2}=225+1296$

$x^{2}=1521$

$\begin{array}{r|l}3&1521\\ \hline 3&507 \\ \hline 13&169\\ \hline 13& 13\\ \hline&1\end{array}$

$\begin{aligned} 1521 &=3 \times 3 \times 13 \times 13 \\ \sqrt{1521} &=3 \times 13=39 \end{aligned}$

$x^{2}=1521$

$x_{2} \sqrt{1521}$

$x=39 \mathrm{~m}$

Perimeter of square 

$\begin{aligned} P &=4 x \\ &=4 \times 39 \\ P &=156 \mathrm{~m} \end{aligned}$

∴ Hence, perimeter =156 m

No comments:

Post a Comment

Contact Form

Name

Email *

Message *